US009251304B2

a2 United States Patent

Drasny et al.

US 9,251,304 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

CIRCUIT DESIGN EVALUATION WITH
COMPACT MULTI-WAVEFORM
REPRESENTATIONS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Gabor Drasny, Poughkeepsie, NY (US);
Gavin B Meil, Round Rock, TX (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/327,658

Filed: Jul. 10, 2014

Prior Publication Data
US 2015/0161313 Al Jun. 11, 2015

Related U.S. Application Data

Provisional application No. 61/912,345, filed on Dec.
5,2013.

Int. Cl1.

GO6F 9/45 (2006.01)

GO6F 17/50 (2006.01)

U.S. CL

CPC ... GO6F 17/5031 (2013.01); GO6F 17/5045

(2013.01); GO6F 17/5059 (2013.01); GO6F
2217/06 (2013.01); GO6F 2217/62 (2013.01);
GOG6F 2217/84 (2013.01)
Field of Classification Search

.. GOGF 9/45
716/103

(56) References Cited

U.S. PATENT DOCUMENTS

5,210,700 A 5/1993 Tom
5,452,239 A 9/1995 Dai et al.
5,862,149 A 1/1999 Carpenter et al.
6,175,946 Bl 1/2001 Ly et al.
6,952,825 Bl 10/2005 Cockx et al.
7,073,146 B2 7/2006 Sarwary et al.
7,089,518 B2 8/2006 Bair et al.
7,139,988 B2  11/2006 Chard et al.
7,243,322 Bl 7/2007 Ly et al.
7,251,794 B2 7/2007 Blanco et al.
7,299,436 B2 11/2007 Chu et al.
(Continued)
OTHER PUBLICATIONS

Singh, Montek, et al., “Generalized Latency-Insensitive Systems for
Single-Clock and Multi-Clock Architectures”, Design, Automation
and Test in Europe Conference and Exhibition, 2004. Proceedings
(vol. 2), Feb. 2004, pp. 1008-1013.

(Continued)

Primary Examiner — Thuan Do
(74) Attorney, Agent, or Firm — DeLizio Law, PLLC

(57) ABSTRACT

A design tool can implement phase algebra based design
evaluation to efficiently evaluate a circuit design with a com-
pact representation of numerous waveforms without simulat-
ing the individual waveforms. Instead of individual wave-
forms, the phase algebra based design evaluation employs
compact representations of a group or set of waveforms.
Phase algebra based evaluation constructs representations of
aset of waveforms based on relationships among a devised set
of functions that account for the various states of a signal over
time, including transitions and glitches. A memorized-tran-
sition function, referred to herein as an M-function, indicates
signal transitions over time.

20 Claims, 26 Drawing Sheets

1312

‘SET CURRENT 8LOT OF THE
OQUTPUT SEQUENCE TO INDICATE
CURRENT SLOT OF THE FIRST
INPUT SEQUENCE

1324

SET PREVIOUS VARIABLE TC
CURRENT SLOT OF THE FIRST
INPUT SEQUENCE AND UPDATE
CURRENT §10T 10 NEXT SLOT

122

j=—————————%. _FOR NUMBER OF SLOTS OF THE SEQUENCE .1
g

Nog—=

]’ . SIGNAL? -~
YES ViS

l— A

~1308

e
.~ CURRENT SLOT NEITHER--
“\THEWDDLE BLOT NOR THE

S—YES
'

1318
. ~THE CURRENT SLOT OF THE FIRGT -7
SEQUENCE INDICATE A REPRESENTATION
" ©F A GOMPLETELY NCN-DETERMINISTIC ™

o
YES
Y

- BOES
~THE NEXT SLOT OF THE FIRST-..
INPUT SEQUENCE INDIGATE A 2>
REPRESENTATION OF A $1 [ABLE’

1320

~“PREVIOUS VARIABLE INDICATE &.._
... REPRESENTATION OF A GLITGH .-~
o 2

T
NO

1340 1

" ADDITIONAL SLOTS \..i 133

INDICATE GUTPUT SEQUENCE |



US 9,251,304 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,333,926 B2 2/2008 Schuppe
7,356,789 B2 4/2008 Ly et al.
7,454,728 B2 11/2008 Ly etal.
7,484,192 B2 1/2009 Jaetal.
7,484,196 B2 1/2009 Jaetal.
7,562,244 B2 7/2009 Wielage
7,594,200 B2 9/2009 Eisner et al.
7,877,717 B2 1/2011 Chu et al.
7,882,473 B2 2/2011 Baumgartner et al.
8,271,918 B2 9/2012 Kwok et al.
8,407,636 B2 3/2013 Iwashita
8,434,047 Bl 4/2013 Jiang et al.
8,438,516 B2 5/2013 Ly etal.
8,438,517 B2 5/2013 Appleton et al.
8,448,111 B2 5/2013 Mneimneh et al.
8,533,541 B2 9/2013 TIwashita
8,914,761 B2  12/2014 Lyetal.

2002/0152060 Al
2007/0174805 Al*
2008/0072188 Al
2013/0132760 Al
2013/0246985 Al
2015/0161309 Al
2015/0161310 Al
2015/0161311 Al
2015/0161312 Al
2015/0161315 Al
2015/0169816 Al

10/2002 Tseng
7/2007 Hsuetal. ...ccocovvnnrnnn 716/18
3/2008 Jaetal
5/2013 Talupuru et al.
9/2013 Lyetal.
6/2015 Drasny et al.
6/2015 Drasny et al.
6/2015 Drasny et al.
6/2015 Drasny et al.
6/2015 Meil
6/2015 Drasny et al.

OTHER PUBLICATIONS

Suhaib, Syed M., “Formal Methods for Intellectual Property Com-
position Across Synchronization Domains”, Dissertation submitted
to the Faculty of the Virginia Polytechnic Institute and State Univer-
sity, Aug. 29, 2007, 190 pages.

Chakrabarty, et al., “Synthesis of Transparent Circuits for Hierarchi-
cal and System-On-A-Chip Test”, National Science Foundation
under grant No. CCR-9875324. pp. 1-6., 2001, 6 pages.

Foulon, “CAD Flow for System on Chip”, The 13th International
Conference on Microelectronics Rabat, Morocco, pp. 241-244, Oct.
29-31, 2001, 4 pages.

Hari, et al., “Automatic Constraint Based Test Generation for Behav-
ioral HDL Models”, IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 16, No. 4, pp. 408-421, Apr. 2008, 14
pages.

Ravi, et al.,, “TAO: Regular Expression-Based Register-Transfer
Level Testability Analysis and Optimization”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 6, pp.
824-832, Dec. 2001, 9 pages.

Seshadri, et al., “An Integrated Approach to Behavioral-Level
Design-For-Testability Using Value-Range and Variable Testability
Techniques”, International Test Conference, 1999. pp. 858-867.,
1999, 10 pages.

Srinivas, et al., “Formal Verification of Digital Circuits Using Hybrid
Simulation”, IEEE Circuits and Devices Magazine, pp. 19-27, Jan.
1988., 9 pages.

“U.S. Appl. No. 14/274,956 Ex Parte Quayle Action”, Apr. 10,2015,
6 pages.

Cummings, “Clock Domain Crossing (CDC) Design & Verification
Techniques Using SystemVerilog”, SNUG-2008, 2008, 56 pages.
Litterick, “Pragmatic Simulation-Based Verification of Clock
Domain Crossing Signals and Jitter using SystemVerilog Asser-
tions”, Verilab & DVCon ; https://www.verilab.com/files/sva_cdc__
presentation__dveon2006.pdf, 2006, 6 pages.

Narain, et al., “Clock Domain Crossing Demystified: The Second
Generation Solution for CDC Verification”, (Real Intent and Sun-
burst Design white paper), Mar. 13, 2008., 20 pages.

Schubert, et al., “Solutions to IBM POWERS Verification Chal-
lenges”, IBM J. Res. & Dev., vol. 59, No. 1, Paper 11, Jan. 2015, pp.
11:1-11:17.

* cited by examiner



U.S. Patent Feb. 2, 2016 Sheet 1 of 26 US 9,251,304 B2
i COMPACT MULTIE-
104 WAVEFORM
REPRESENTATION
128
x,/: ?
120 1R
16 AL B
B g e o WOR
R v = S A
12T AGL
152 124 140

FIG. 1



U.S. Patent Feb. 2, 2016 Sheet 2 of 26 US 9,251,304 B2

Time -3-2-1-0 123 456 7 8 9101112
G-funciion .. < glich-aware- < gltch-aware-

Waveform .. |

M-Function ...

FIG. 2



U.S. Patent Feb. 2, 2016 Sheet 3 of 26 US 9,251,304 B2

Time . 0 1 2 3 4 5 6 7 8 8

304 MweE U FL FL FR FS FS FX FS F1 FH F§
$O8\f\ Waveform Set L SO SIS SOOI

Diagram ... ; | s

312
U Waveform 1

om\f“ Waveform 2 ...

32{)\1\ Wav@f{)rrri 3 . %,;,,V,;,N,,N,;,N,;,N,‘,N,;,N-;,VL,,W;,NA,YW\,N~N~N~N~N~vmvw N

324\!\ \Ajavefmrm 4 L. ENNAWAWANNNNNNNj ?NAMIAMU\M“\‘NMNN

FiG. 3



U.S. Patent Feb. 2, 2016 Sheet 4 of 26 US 9,251,304 B2

A04A
W Virtual clock © 90=0.10=5, T0=2
Time ¢ 1 2 3 4 5 6 7 8 @ 10 11 12

. NTF FL FL F1 FH FH FH FH FO FL FL FL F1 FH
PAPNWaveforrn Set e
Diagram e A R
' 0D P
FiG. 44
4Q4C
CWSS= (FS S, FX EX EXEX EX, EX ]
408C - Slot 0 1 2 3 4 5 8 . 7 g 1 2
412C— . NTF FS F8 FX o FXo FXOFX OFX X FS 8 FX
H i‘r’ B : H H 3 H H t H
Waveform Sel cvrcmmmmann i~ v [ [ S s
diagram N SO SR S T e o
4&60 FIG. 4B

FIG. 4



U.S. Patent Feb. 2, 2016 Sheet 5 of 26 US 9,251,304 B2

son W sq - WAVEFORM SET FUNCTION
504 | (WSF)
508 NONDETERMINISTIC TRANSITION FUNCTIONS (NTFS)

NTF OPERATORS  \\

\\\ > BEG

CLOCKED WAVEFORM SET
' U SPECIFICATIONS (CW5S)

o
—
<€D

. PHASE TYPE GROUPS CWSS OPERATORS @54

PHASE TYPE GROUP A
OPERATORS 568

¥
¥ m——
META PHASE TYPE 526\~  SETSOF
GROUPS WAVEFORMS

524 S, J

o PHASE TYPES
% | VIRTUAL
PHASETYPE CLORK
OPERATORS g7a
596 PHASE TAG i< 512
VA PHASETAG o
OPERATORS s
\ 576
MODE MODE INDEPENDENT PHASE
540 PRESSIONS 544 Y PRESSIONS (MIPE
On  EXPRESSIONS S EXPRESSIONS (MIPES)
| MODE OPERATORS WJN ‘MIPE OPERATORS (™
: 580 | 584
PHASE EXPRESSIONS
548
J

PHASE EXPRESSION OPERATORS J;\Bg
¥

h:

552\5\ REDUCED ORTHOGONAL LIST OF CONDITIONAL MIPE PAIRS (ROLCMP)

¥
PHASE IDS

PHASE iD OPERATORS  WJ™ 552

FiG. 5



U.S. Patent Feb. 2, 2016 Sheet 6 of 26 US 9,251,304 B2

| RECEIVE A REPRESENTATION OF MULTIPLE WAVEFORMS AT
6944\3 EACH PRIMARY INPUT AND AT THE QUTPUT OF EACH CLOCK
- GENERATOR OF AN RTL CIRCUIT DESIGN REPRESENTATION

¥

608 g~ INITIALIZE THE RTL CIRCUIT DESIGN REPRESENTATION

A
DETERMINE MULTI-WAVEFORM REPRESENTATIONS FOR EACH
612 NET IN THE RTL CIRCUIT DESIGN REPRESENTATION
RESULTING FROM THE RECEIVED REPRESENTATION(S)

k 4

| SUPPLY THE DETERMINED MULTHFWAVEFORM
6165\ REPRESENTATIONS OF THE NETS FOR EVALUATION OF THE |
| RTL CIRCUIT DESIGN 3

FIG. 6



U.S. Patent Feb. 2, 2016 Sheet 7 of 26 US 9,251,304 B2

sink box of
source set
neta
netd 7
—-27-—— FLIPFLOP ’(7 PDR
704 ;; 712 (7
708 718

FiG. 7



U.S. Patent Feb. 2, 2016 Sheet 8 of 26 US 9,251,304 B2

) FOREACH NET IN AN RTL CIRCUIT DESIGN w
N ¢ |
REPRESENTATION A 804

g

T8 T
AMULT-WAVEFORM
N\ REPRESENTATION >
ALREADY ASSIGNED TO
O THENET2

808

e o~

DOES )
. THENETREPRESENTA . ..
“ CIRCUIT INPUT OR CLOCK -
YES " BENERATOR OUTPUT2 ~

N 7
\\\ - g
N

NO "
s

¢

816 ASSIGN NULL
O INDICATION TO THE
& NET

ASSIGN UNKNOWN L 4
INDICATION TO THE NET g0 ADD EACH SINK NODE
ASSOCIATED WITH THE NET

TO A SET OF SINK NCDES
» TO BE PROCESSED

NN S 5
—" ADDITIONAL NET? ~~528 824
3
NG
¥
INDICATE INITIALIZATION U~
COMPLETE e

FIG. 8



U.S. Patent Feb. 2, 2016 Sheet 9 of 26 US 9,251,304 B2
RECEIVE INPUT SEQUENCE OF NON-DETERMINISTIC
804~ TRANSITION REPRESENTATIONS AND PHASE TYPE
GROUP IDENTIFIER EOR THE INPUT SEQUENCE
oos | SELECT FIRST ENTRY iN ORDERED PHASE TYPE
STRUCTURE THAT ASSOCIATES PHASE TYPES WITH
PHASE TYPE GROUPS
P L a12
7 poEs
_ PHASE TYPE GROUP OF THIS
-+ ENTRYMATCHTHE YES
- RECEIVED PHASE TYPE i
GROUP IDENTIFIER? DETERMINE SEQUENCE OF NON-

) DETERMINISTIC TRANSITION
E 918~ REPRESENTATIONS ASSOGIATED
WITH THE PHASE TYPE OF THIS

“E ENTRY
SELECT NEXT ENTRY IN THE
ORDERED PHASE TYPE  \rayop
STRUCTURE )
Y s \\
s
7 THEWNPUT
NO * SEQUENCE A SUBSET "~y
“OF THE PHASE TYPE
" SEQUENCE 2
YES

!

928 RETURN PHASE TYPE
~ INDICATED IN THIS ENTRY

FIG. 9



U.S. Patent Feb. 2, 2016 Sheet 10 of 26 US 9,251,304 B2
1004~ INITIALIZATION
APPLY
1008~ SOURCESETEMPTY? =2 4  CHECKING
— ALGORITHMS
1 NO 1036

FROPAGATE MULTIWAVEFQRM REPRESENTATION THROUGH

SOURCE SET

10128 NEXT BOX N THE SOURCE SET AND REMOVE THE BOX FROM THE |

" PROPAGATED -
_—MULTIWAVEFORM REPRESENTATION
1016y~ DIFFERENT FROM CURRENT MULT-WAVEFORM =
- _REPRESENTATION ATOUTPUT
e NET? -

i VES

ASSIGN MULTEWAVEFORM REFRESENTATION TO QUTPUT NET

NO

OF PROCESSED BOX

¥

PUT SINK BOXES OF THE NET IN UPDATE SET

NO

L OYES
¥

MOVE UPDATE SET TO SOURCE SET

FiG. 10



U.S. Patent Feb. 2, 2016 Sheet 11 of 26 US 9,251,304 B2

APPLY AN OPERATION THAT CORRESPONDS TO THE CIRCUIT COMPONENT
REPRESENTATION TO A FIRST SIGNAL TRANSITION REPRESENTATION OF EACH
SEQUENCE OF SIGNAL TRANSITION REPRESENTATIONS OF EACH INPUT NET OF
THE CIRCUIT COMPONENT REPRESENTATION AND ASSIGN A RESULT TO A FIRST

SLOT OF AN QUTPUT SEQUENCE 1108

. FOR EACH SUBSEQUENT SIGNAL TRANSITION REPRESENTATION OF
— EACH SEQUENCE OF SIGNAL TRANSITION REPRESENTATIONS OF
EACH INPUT NET OF THE CIRCUIT COMPONENT REPRESENTATION

[Tt

|
\
\
Y
\

k 4
APPLY THE OPERATION TO THE SIGNAL TRANSITION |~ 1118
REPRESENTATION(S) TO YIELD ARESULT

¥

YES VALIDATE THE RESULT AGAINST ADJACENCY RESTRICTIONS |~ 1120
WITH RESPECT TO THE PRECEDING RESULT

4 ‘
ASSIGN THE VALIDATED RESULT TO THE NEXT
SLOT OF THE QUTPUT SEQUENCE

w1124

k
/ ADDITIONAL SUBSEQUENT SIGNAL STATE Nt 1128
/ TRANSITION REPRESENTATICON

|
NGO

RA
A

FiG. 11



U.S. Patent

1201 -

Feb. 2, 2016 Sheet 12 of 26 US 9,251,304 B2

o

VALIDATE THE FIRST ELEMENT AND LAST ELEMENT OF THE
OUTPUT SEQUENCE AGAINST ADJACENCY RESTRICTIONS

¥ ‘
ASSIGN RESULT OF THE VALIDATION TO
AVALIDATION VARIABLE AND X=0 |

L

IS

1203

R

Eal

= VALIDATION VARIABLE == ELEMENT X OF e
- _QUTPUT SEQUENCE?

1205

i

l

- ASHIGN VALIDATION VARIABLE TO
) iELEMENT X OF THE QUTPUT SEQUENCE

YES

4

1211 ~_ =~ X==NUMBER OF SLOTS? =

“r
NO
¥

1213 -

VALIDATE THE VALIDATION VARIABLE AND THE X SLOT OF THE
QUTPUT SEQUENCE AGAINST THE ADJACENCY RESTRICTIONS

y

ASSIGN VALIDATION RESULT TO

YALIDATION VARIABLE

8
]

INDICATE QUTPUT SEQUENCE

1219 L

FiG. 12



U.S. Patent Feb. 2, 2016 Sheet 13 of 26 US 9,251,304 B2

1304 — | SET PREVIOUS VARIABLE TO LAST SLOT OF FIRST INPUT SEQUENCE OF
L SIGNAL TRANSHION REPRESENTATIONS

> _ FOR NUMBER OF SLOTS OF THE SEQUENCE /Q\13QS
T8 T
_~CURRENT SLOT NEITHER - __

“-THE MIDDLE SLOT NOR THE— —YES
o LASTSLOT? , $
1312 1316
DOES
NO -~ THE CURRENT 8LOT OF THE FIRST .~

e SEQUENCE INDICATE A REPRESENTATION =
“OF A COMPLETELY NON-DETERMINISTIC
T SIGNALY

YES
/f’Y‘\\
¥ T T
SET CURRENT SLOT OF THE oo DOES ™
| _THE NEXT SLOT OF THE FIRST_
OUTPUT SEQUENGE TO INDICATE NEXT SLOT OF THE FIRST~.
CURREN SLOT OF THE et #~NOF— INPUTSEQUENCE INDICATEA -
“REPRESENTATION OF A STABLE
INPUT SEQUENCE | RESENTATION OF A STAE
| ~_ SIGNAL?
YES 1324 ! 1320

YES YES

DOES
__~"PREVIOUS VARIABLE INDICATE A~
T _REPRESENTATION OF AGLITCH

- FREESIGNAL?

SET PREVIOUS VARIABLE TO | 1328
CURRENT SLOT OF THE FIRST NO
INPUT SEQUENCE AND UPDATE ¥
CURRENT SLOT TO NEXT SLOT SET CURRENT SLOT OF THE
\ OUTPUT SEQUENCE TO INDICATE
AREPRESENTATION OF A
1375 GLITCH FREE SIGNAL
,, v \ >
" ADDITIONAL SLOTS \\,\f\'a:s:%a 1332
i
NO
¥

12340 INDICATE QUTPUT SEQUENCE
FIG. 13




U.S. Patent Feb. 2, 2016 Sheet 14 of 26 US 9,251,304 B2

SET DELAY VARIABLE TOINDICATE 4404
STABLE SIGNAL REPRESENTATION

'

. FORNUMBER OF SLOTS INSEQUENCE,  /
1408 1~ WHERE |15 EACH SLOT h
" DOES
- MULTHVAVEFORM
*EXPRESSION INDICATE -~y
. ALEADING PHASE VES
NO CAAGE S
~ CLOCK? -
1410
Yy ] ¥
1412 1| SETJ TO BITWISE XOR 4 CSETSTOL 1418
A
géﬁwsz:i =07 YES
1424 Y | —i
Lo s R - SETJTH SLOT OF OUPUT
- JTHSLOTOF INPUT- | SEQUENCE TO JTH SLOT OF
Im< SEQUENCE ASUBBET  FIRST INPUT SEQUENCE
o OFTHEDELAY - |
1432 “VARIABLE? .
- l 1428
SET DELAY VARIABLE YES
TO INDICATE
REPRESENTATION N
INDICATED AT JTH 1436
SLOT OF FIRST INPUT i >,
SEQUENCE
SET JTH SLOT OF QUPUT
»  SEQUENCE TO DELAY
VARIABLE
¥

1440~ ADDITIONAL SLOTS?
E
NO
¥
. INDICATE QUTPUT
1444 1 SEQUENCE

FiG. 14



U.S. Patent Feb. 2, 2016 Sheet 15 of 26 US 9,251,304 B2

DOES

501 7 AST SLOTS IN BOTH INPUT
— 5 “QUENCES OF SIGNAL TRA N&«mu\s T
NO™™ - 5
1905  REPRESENTATIONS INDICATEA -~ YES 1908
7 - GLITOH FREE SIGNAL?~ 4 7
SET GLITCH FREE RANGE SET GLITCH FREE RANGE
VARIABLE TO INDICATE OUT VARIABLE TO INDICATE MATCH
\ 7 S
B FOR NUMBER OF SLOTS IN EACH SEQUENCE - 1807
v
: T 509
_ WAVEFORMS REPRESENTED BY GLITCH .
_AWARE SIGNAL STATE MULTI-TRANSITION REPRESENTATION.
-~ OF CURRENT SLOT OF FIRST INPUT SEQUENCE A SUBSET OF THE -
. WAVEFORMS REPRESENTED BY GLITCH AWARE SIGNAL STATE
T MULTITRANSITION REPRESENTATIONOF ,
- CURRENT SLOT OF 8ECOND INPUT. YES
. SEQUENCE? -
 GLITCH FREE RANGE
NO - VARIABLE SETTG -
e \E 1515
o YES
RETURN \
FALSE " DOES .
YES ~CURRENT SLOT IN BOTH INPUT-_
1513 +SEQUENCES INDICATE GLITCH -
~FREE SIGNAL?
p W
D YES
SET GLITCH
@ FREE RANGE
1519~ VARIABLE TO
(501 INDICATE
3 MATCH
,,,,,,,,,,,,,,,, h A
/ ADDITIONAL
stots? ¥
i
NO
g T ¥
1823 7 RETURN TRUE

FIG. 15A



U.S. Patent Feb. 2, 2016 Sheet 16 of 26 US 9,251,304 B2

e
1536
" ooes e
~~CURRENT SLOT IN SECOND iNPUT‘
- SEQUENCE NOT INDICATE GLITCH . NO
o FREESIGNAL? i
vis wfa
7 DOES f\
~CURRENT SLOTIN ™
NO FERST NPUT SEQUENCE
“NOT INDICATE GLITCH~
E5/38 1 5 2 “FREE SIGNAL?”
7 ¥ A ~. 7
SET GLITCH FREE DOES
RANGE VARIABLE ,./uLETa.,H FREE RANGE
TO INDICATE OUT " VARIABLE INDICATE

eoosug?

YES ’
/J ¥

W a6 RET%RN | SET GLITCH FREE |
1946 T T e - RANGE VARIABLE
~ TOINDICATE SUB

i 1544

o3
A

FiG. 158



US 9,251,304 B2

Sheet 17 of 26

Feb. 2, 2016

U.S. Patent

g "ol

:{:

0.




US 9,251,304 B2

Sheet 18 of 26

Feb. 2, 2016

U.S. Patent

yril

L1 Old

£

zels

AN

{TI0ND 1138 3LVCdN

821

i
AN

{£44 244 1440 11T IONNOS

OpLt &,
D
:{:
&
o Ao,
9}
MU D *
:<:
L
o a
Y,




US 9,251,304 B2

Sheet 19 of 26

Feb. 2, 2016

U.S. Patent

gl 9id

0v81 g

ze8l

!

r 3y .
UEQ L3S 2LVAAT ey 4] 1438 30UN0S




US 9,251,304 B2

Sheet 20 of 26

Feb. 2, 2016

U.S. Patent

6l "Old

0v6} «&

1Y,

I — : ,/ u 454DV, 9¢61

bdd

el g2l

{za0d 1804} 1138 TLVAdN {447} 1138 304N0S



US 9,251,304 B2

Sheet 21 of 26

Feb. 2, 2016

U.S. Patent

0Z "Oid

{zacd 1904} 1138 ILYdn NN L3S I0UN0S 0802

owam o
U
:{G
74
a :
B0 J8v,
< 8007
2804 5T,
wngw
401D, " ——1 LE0d s scor
3
960e 7507 a
o 5 « b4
AN B8 SLadn e el as amnae | TR0 L] a
E RESE f {zand ‘1904 } (L3S 354N0S v
L0t 8702




US 9,251,304 B2

Sheet 22 of 26

Feb. 2, 2016

U.S. Patent

ARSI

o O

230,

&

2
““““““““““““““““““ Q‘ :im@{.:
e d po
A5G0,
N
o x
e A0V, +4Qd LADGTDY,
otz o)
:{:
L

917

(MY} LTS FLVadN

pes

| ITINND 438 3LVadn

2612

{zaad} LIS I0HN0S

AT

il

1

{60 'LE0d } 1138 I0MN0S

4

S 1T/



US 9,251,304 B2

Sheet 23 of 26

Feb. 2, 2016

U.S. Patent

o

O 184,

£

B
ﬂsiﬂ any

O d

ZZ "9l

802¢

DG TOY,

7722

~

S ECE TR ePI

ovze

fany) 138 30HN0S

eee

{GNY} LTS 3IVadn

8222

\

FTINND L3S 30HN0S

0zze
faN} 135 3LYadN

9172

{zand} 1138 I08N0S

A4

404718,




US 9,251,304 B2

Sheet 24 of 26

Feb. 2, 2016

U.S. Patent

gad T 90EC

Iy ar=

e

o e TR

0vez

)

(710N} 1138 3LV adn

§7ez

]

{£44} 1138 YO

91€7

FPION L3S 3LVadn

cite

{OMy! 138 30HN0S

TLogEE

£2 "9l
nhmﬁu
. 2E )
““““““““““““““““ ar DV,
wez e
O —— Z80d ————
P ; ADTDY, ADSTDY,
. ONY \J
T | ADITOY,
TN vaad -
s 3. -
9z o
‘ D {
e A , ]
{£44} 1138 I0MN0OS DY,
1262
AN i3S 3ounos - S



US 9,251,304 B2

Sheet 25 of 26

Feb. 2, 2016

U.S. Patent

HA0d7108,

2

{TINN} L3S V0N

gzt

71NN} 1138 30MN0S

ozve

(TIAN) L3S FLvadn

9172

{44} 1138 30UNOS

U YN

At

1ZARIIE!
:mﬁ h
1"‘1‘1\11\11111111&\ mm{u“
Z44
O 4" %y,
_._vsu@._@x‘"A cdUd 5,
CaNVY
— | AT, ;
LU AT,
o o L
W nn.{um
b
o 4
8w,




US 9,251,304 B2

Sheet 26 of 26

Feb. 2, 2016

U.S. Patent

HOLYRWWAZ
NOISAT LNDHIS 438vd
IAVACLINW LOYdW0D

4T

GZ Ol

HINA
AHOWEN

8067

LINA
HOSS300Hd

b0S7




US 9,251,304 B2

1
CIRCUIT DESIGN EVALUATION WITH
COMPACT MULTI-WAVEFORM
REPRESENTATIONS

RELATED MATTER

This non-provisional patent application claims benefit of
U.S. provisional patent application 61/912,345, which was
filed on Dec. 5, 2013 and is incorporated by reference in its
entirety.

BACKGROUND

Embodiments of the inventive subject matter generally
relate to the field of circuit design, and, more particularly, to
electronic design automation (EDA) tools to identify poten-
tial defects in a register transfer level (RTL) design of a chip
or a system on a chip.

EDA tools are used to evaluate chip designs prior to fabri-
cation. The EDA process broadly consists of two steps. The
first step is a check of the RTL design logic. The second step
is a creation of a physical circuit design from the RTL design.
The first step, checking the design logic, can be referred to as
RTL design checking. In RTL design checking, a language
such as VHDL (Very High Speed Integrated Circuit Hard-
ware Descriptive Language) or Verilog can be used to
describe and model the functional behavior of a circuit. RTL
design checking itself can be decomposed into two steps. The
first step is static checking and the second step is verification,
also commonly referred to as a dynamic checking. In static
checking, the structure of the design is analyzed without
simulating the behavior of the design. Conversely, in verifi-
cation, the design is simulated by applying test patterns or
stimulus to the inputs of the design in an attempt to exhaus-
tively identify possible errors. Verification can be an expen-
sive process for a complex chip or system on a chip. Verifi-
cation can also be inconclusive, since it is often infeasible to
apply all possible test patterns to the inputs of a complex
design.

Chips and systems on chips continue to increase in com-
plexity, comprising many systems and sub-systems. These
systems and sub-systems might comprise multiple clock
domains. A clock domain is a set of sequential logic elements,
such as transparent latches and flip-flops, and combinational
logic associated with these sequential logic elements that are
clocked by a common clock or by clocks having common
frequency and a fixed phase relationship. A clock signal
causes a change in the state of sequential logic, such as a
flip-flop or transparent latch. An asynchronous clock domain
crossing is a path from a sequential logic element or other
source of state transitions in a design in a first clock domain to
a sequential element in a second clock domain through which
transitions may occur when the first clock domain operates
asynchronously with respect to the second clock domain.
When a data signal crosses from a first clock domain to a
second clock domain and the first clock domain is asynchro-
nous to the second clock domain, the crossing is referred to as
an asynchronous clock domain crossing.

SUMMARY

Embodiments of the inventive subject matter include deter-
mining a sequence of signal transition representations asso-
ciated with an input net of an indicated component in a reg-
ister transfer level circuit design. Each signal transition
representation of the sequence of signal transition represen-
tations represents a non-deterministic transition from a pre-

10

20

25

40

45

55

60

2

vious signal state to a set of one or more possible signal states.
An output sequence of signal transition representations
derived from the sequence of signal transition representations
associated with the input net is determined based on the
indicated component. It is determined whether the output
sequence of signal transition representations conforms to
restrictions that restrict which signal transition representa-
tions can be adjacent to other signal transition representa-
tions. The output sequence of signal transition representa-
tions is associated with an output net of the indicated
component if the output sequence of signal transition repre-
sentations conforms to the restrictions. If the output sequence
of signal transition representations does not conform to the
restrictions, the output sequence of signal transition represen-
tations is modified to conform to the restrictions. In addition,
the modified output sequence of signal transition representa-
tions is associated with the output net.

BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments may be better understood, and
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a conceptual diagram that depicts example phase
algebra based circuit design evaluation with a compact multi-
waveform representation.

FIG. 2 illustrates the relationships among the G-function, a
waveform, and the M-function.

FIG. 3 depicts an example conceptual mapping of transi-
tions in multiple waveforms to NTFs.

FIGS. 4A-4B depict example NTF sequences and the
information encoded in the sequences.

FIG. 5 is a conceptual diagram that depicts an example
hierarchy of relationships among data constructs.

FIG. 6 is a flowchart of example operations for initializing
an RTL circuit design representation of phase algebra based
evaluation and propagation of compact multi-waveform rep-
resentations throughout the design representation.

FIG. 7 illustrates terminology associated with the example
propagation algorithm and pseudocode to be described.

FIG. 8 is a flowchart of example operations for initializing
a circuit design representation for phase algebra based evalu-
ation.

FIG. 9is a flowchart of example operations for determining
an output multi-waveform representation based on an input
sequence of non-deterministic transition representations.

FIG. 10 is a flowchart of example operations for propagat-
ing multi-waveform representations after initialization of an
RTL circuit design representation.

FIGS. 11 and 12 are flowcharts of example operations for
applying circuit component based operations to sequences of
signal transition representations.

FIG. 13 is a flowchart of example operations for imple-
menting the cwss_fix_latch operator.

FIG. 14 is a flowchart of example operations for implemen-
tation of the cwss_path_delay operator.

FIGS. 15A-15B depict a flowchart of example operations
for implementation of the cwss_is_subset operator.

FIGS. 16-24 are conceptual depiction of circuit design
evaluation with example phase tags.

FIG. 25 depicts an example computer system compact
multi-wave based circuit design evaluator.

DESCRIPTION OF EMBODIMENT(S)

The description that follows includes example systems,
methods, techniques, instruction sequences and computer



US 9,251,304 B2

3

program products that embody techniques of the present dis-
closure. However, it is understood that the described embodi-
ments may be practiced without these specific details. For
instance, the syntax employed to implement the disclosure
can be varied. Additionally, although illustrations refer to a
flip-flop as a fundamental circuit component, embodiments
need not include a flip-flop. For example, a circuit model can
include transparent latches and an inverter instead of a flip-
flop as fundamental circuit components. Additionally,
embodiments may implement fewer operations than the
operations described herein, while other embodiments might
be implemented with more operations that the ones described
herein. In other instances, well-known instruction instances,
protocols, structures and techniques have not been shown in
detail in order not to obfuscate the description.

Modern processors or systems on a chip include multiple
components. Identifying as many design defects as possible
at the static checking phase of an RTT. design check increases
the efficiency of the verification process, thereby saving time
and money. A design tool can implement phase algebra based
design evaluation as described herein to efficiently evaluate a
circuit design with a compact representation of numerous
waveforms without simulating the individual waveforms.
Instead of individual waveforms, the phase algebra based
design evaluation employs compact representations of a
group or set of waveforms.

Phase algebra based evaluation constructs representations
of a set of waveforms based on relationships among a devised
set of functions that account for the various states of a signal
over time, including transitions and glitches. A memorized-
transition function, referred to herein as an M-function, indi-
cates signal transitions over time. The output value of the
M-function indicates that a transition is occurring/has
occurred (e.g., indicated with a value of 1), or no transition
has occurred (e.g., indicated with a value of 0) with respect to
a given time interval. The M-function can also indicate (e.g.,

10

15

20

25

30

35

4

with the value of 0) that the given time interval is outside a
range ofinterest. A glitch aware function, referred to herein as
a G-function, accounts for the occurrence of a glitch. In
general, a glitch occurs due to delays in inputs to a circuit
component, delay inherent in a circuit component changing
its output to reflect changes to its input, or both. For example,
consider a first input and a second input to an AND gate.
Assume that the first input at time t=1 is expected to transition
to a 1 and the second input at time t=1 is expected to transition
to a 0. However, if the second input is delayed, such that at
timet=1, the second inputis a 1 rather than a 0, then the output
of'the AND gate will be a 1 rather than a 0 as anticipated. The
G-function assumes a value of 1 for all times during which
there is interest in determining whether a glitch can occur. The
relationships among these functions are depicted in FIG. 2
later.

FIG. 1 is a conceptual diagram that depicts example phase
algebra based circuit design evaluation with a compact multi-
waveform representation. A circuit design tool performs
phase algebra based circuit design evaluation on a machine
readable representation of an RTL circuit design 128. The
RTL circuit design representation 128 at least includes pri-
mary circuit inputs 112 and clock generators 116. A primary
input 112 is an input to the circuit itself. A primary input 112
is not driven by any component within the circuit. A clock
generator 116 is a circuit component that generates a clock
signal. FIG. 1 only depicts a single primary input 116 as
representative of the primary inputs throughout the circuit
design representation 128 and clock generator output 116 as
representative of the clock generators throughout the circuit
design representation 128 for ease of understanding. A design
tool that uses phase algebra based evaluation is not limited to
these two types of components. Table 1 below depicts
example RTL circuit design components that can be modeled
in an RTL circuit design evaluated by a phase algebra based
evaluation tool.

TABLE 1

Example RTL Circuit Design Components

Output Behavior (at
time t, as function of
Component Symbol input(s)) Comments
buffer Y(t) = A
A Y
inverter Y(t) = not (A(t))
A Y
2-way AND A Y(t) = and (A(t), B(t)
Y
B_
2-way OR A Y(t) = or (A(t), B(t))
Y
B
2-way XOR A Y(t) = xor (A(t), B(t)) Although XOR (exclusive-OR) can be modeled using AND
Y gates and inverters, having a separate component allows
B more precise waveform calculations.
latch D D Q Q(t) =D(t-1) if C(t-1) =  The latch sample when the clock is high. There is a unit
C C LAT 1elseY(t-1) delay from any change on an input to a change on the
output.
flip-flop D D Q Q Q(t) =D(t-1) if (C(t-1) =  The flip-flop samples when the clock transitions high. There
C C FF 1 and C(t-2) = 0) else is a unit delay from any change on an input to a change on
Y(t-1) the output.



US 9,251,304 B2

TABLE 1-continued

Example RTL Circuit Design Components

Component

Symbol

Output Behavior (at
time t, as function of

input(s))

Comments

unit delay block

path delay block

primary input

primary output

clock generator

UDB

PDB

b

() = At-1)

Y(t)=A(tn),0=n=N;
where N is an unknown
upper bound

Y(t) = unknown

Y oscillates periodically
between 0 and 1.

The unit delay block (UDB) represents a short (unit) delay.
It may be used, for example, to create a pulsed (chopped)
clock from a non-pulsed clock.

The path delay block (PDB) represents a combinational

path delay, which is typically not know in an RTL model,
but is assumed to have some upper bound deterermined by
static firming analysis. An embodiment of this invention can
insert this component into the RTL model to model such
delays. For example, inserting it on the input side of an AND
gate models the fact that AND gate inputs can arrive at
different times, causing glitches.

This represents an input to the circuit being checked.

This represents an output of the circuit being checked.

This represents a clock source within the verification model.
Alternatively, clocks can be sourced by primary inputs to
the model.

This would only appear in a verification model, not an actual

circuit. It generates a random zero or one at each unit of

time. Verification tools typically use a component like this to
model nondeterminism.

@Y
random box Y(t) = random
RANDOM Y
assert box
A ASSERT
cover box
A COVER

This would only appear in a verification model, not an actual
circuit. It represents a property to be verified; specifically,
that the input is always equal to 1. The verification process
must attempt to find any situation in which an assert box
input is not one, and if found, report it to the user as a
property violation.

This would only appear in a verification model, not an actual
circuit. It represents a condition to be exercised by a

simulation. The verification process must attempt to find one
or more situations in which a cover box input is one, and if
found, report them to the user as coverage events.

A compact multi-waveform representation 104 is provided
for the RTL circuit design 108. For example, the multi-wave-
form representation 104 is provided in a RTL description
using attributes or in a file supplied as input to the circuit
design tool. The circuit design tool determines compact
multi-waveform representations generated on nets through-
out the RTL circuit design dependent upon the components
traversed by the compact multi-waveform representations.
Example notations “A” 120 and “A@L” 124 for compact
multi-waveform representations are depicted. These nota-
tions are referred to as “phase tags™ herein. This example uses
this phase tag to illustrate handling of a virtual clock identi-
fied as ‘A’. In this description, a phase tag and a phase type are
distinguished. A phase type is a construct (e.g., variable or
notation) that represents a generic virtual clock. Use of a
phase type would be sufficient in a design that contemplates a
single virtual clock. A phase tag is a construct that identifies
a virtual clock. Although a phase tag can be used in a design
that contemplates a single virtual clock, the utility of the
phase tag becomes apparent when multiple virtual clocks are
being considered. In addition, operators associated with
phase tags (“phase tag operators”) manipulate results of
phase type operators as appropriate for multiple virtual
clocks. The particular terminology used to distinguish these
constructs should not be used to limit claim scope. For this
illustration, the notation “A” represents a set of signals or

45

waveforms with a clock signal behavior corresponding to a
virtual clock A. The notation “A@L” represents a set of
signals or waveforms corresponding to a latch clocked by the
leading edge of the virtual clock identified as A. The tables for
phase types use the notation ‘C’ as a general identifier of any
virtual clock. The majority of this description focuses on use
of phase types and phase type operators.

The circuit design representation 128 also includes an
inverter 132 and an AND gate 140. A net 148 is graphically
depicted as connecting output of the clock generator 116 to
input into the inverter 132. A net 131 is graphically depicted
connecting output of the inverter 132 to a first input of the
AND gate 140. A net 152 is graphically depicted as connect-
ing output of the primary input element 112 to a second input
of'the AND gate 140. The phase algebra based evaluation tool
determines that inputting the compact multi-waveform rep-
resentation noted by the notation 120 into the inverter 132 will
yield a compact multi-waveform representation with a nota-
tion “~A” 126, which represents a set of signals or waveforms
with an inverted clock signal behavior. The phase algebra
based evaluation tool determines that inputting the compact
multi-waveform representation noted by the notation 124 and
the compact multi-waveform representation noted with the
notation 126 into the AND gate 140 will yield a compact
multi-waveform representation with a notation “*” with the
basic phase algebra since the basic phase algebra does not



US 9,251,304 B2

7

have values defined to handle a gated clock. Ifthe clock gating
algebra is being employed, then the notation yielded would be
“(~A) %*” 126. The notation “*” represents all sets of wave-
forms. The notation (~A) %* represents a set of waveforms
characterized as a low-gated inverted clock. The phase alge-
bra based evaluation tool propagates compact multi-wave-
form representations throughout nets of the circuit design
representation 128 using look up tables constructed based, at
least in part, on a set of possible waveform states. When glitch
awareness is implemented, a phase algebra based evaluation
tool will propagate compact multi-waveform representations
on nets throughout a design representation using look up
tables that are constructed based on a set of possible wave-
form states, and both the M-function and the G-function. The
look up tables and basis for the look up tables are discussed
later.

When compact multi-waveform representations have been
determined, a checking unit 172 of the evaluation tool ana-
lyzes the compact multi-waveform representations associ-
ated with the nets of the design representation 128. The
checking unit 172 can identify defects in the design using
these compact multi-waveform representations. For example,
the checking unit 172 will evaluate the transition behavior
represented by a compact multi-waveform representation
associated with a net against a rule or constraint of the net.
The rule or constraint of the net can be explicit (e.g., directly
defined in associated with the net) or implicit (e.g., indirectly
associated with the net via a characteristic of the net or at least
one of the sinks of the net).

Referring back to Table 1, the first column of Table 1
includes common names for the example components and the
second column of Table 1 includes symbols that commonly
represent the example circuit components. The third column
of Table 1 indicates the relationships between inputs to the
circuit components and the outputs that the circuit compo-
nents generate based on the inputs furnished to the circuit
components. The transparent latch of row six of Table 1 is an
example circuit component. Row six, column three of Table 1
specifies the relationship between the inputs to the transpar-
ent latch and the output that the transparent latch generates.
The transparent latch takes two inputs: a data signal, repre-
sented by D, and a clock signal, represented by C. The clock
signal can be generated by a clock generator, listed in row 12
of Table 1 or other harmonic oscillator. The transparent latch
samples the data signal D when the clock signal equals 1.
Thus, the output Q of the transparent latch at time t, denoted
Q(1), equals the data value D at time t-1, denoted D(t-1),
when the clock at time t-1 takes a value of 1, denoted C(t-
1)=1. Otherwise, the output Q of the transparent latch does
not change. In another embodiment, the transparent latch
samples the data signal D at all times during which the clock
signal assumes a value of O rather than a value of 1. The
flip-flop, shown in row seven of Table 1, is another circuit
component. Like the transparent latch, the flip-flop receives
two inputs, a data signal D and a clock signal C. The output Q
of'the flip-flop equals the value of the data signal. The flip-flop
samples the data signal only during a small interval of time
when the clock signal transitions from a 0 to a 1, unlike the
transparent latch, which continuously samples the data signal
when the clock signal equals a 1. Thus, if the data signal at the
time at which the clock transitions from a O to a 1 is a 0, then
the output of the flip-flop will become a 0. Otherwise, if the
data signal at the time at which the clock transitions from a 0
to a 1 is a 1, then the output of the flip-flop will become a 1.
Column three of Table 1 specifies this relationship. The out-
put of the flip-flop Q(t) at time t equals the value of the data
signal at time t-1, denoted D(t-1), if the clock signal at time

10

15

20

25

30

35

40

45

55

60

65

8

t-1 denoted C(t-1)=1, and the clock signal at time t-2,
denoted C(t-2)=0, thereby signifying a transition in the clock
signal from a 0 to a 1. The flip-flop can be modeled by two
transparent latches. The transparent latch and flip-flop each
are modeled to include a unit delay such that the transparent
latch and flip-flop express the output shown in column three
of Table 1 after a unit has elapsed from the time of receipt of
an input that causes a change in state of the output. The
combinational logic components shown in Table 1, such as
the AND gates shown in row three, are modeled to have no
delay between the time that the component receives an input
and the time that the component generates an output based on
the received input. However, a combinational logic circuit
component will likely show a delay between receiving an
input and generating an output. To model such a delay, a path
delay block (PDB) can be implemented. A PDB (row nine in
Table 1) represents a nondeterministic, bounded delay on the
time necessary for a combinational circuit component to gen-
erate an output based on received inputs. The foregoing tim-
ing assumptions associated with the circuit components avoid
modeling physical time, and allow modeling abstract time.
This conserves computational resources.

FIG. 2 illustrates the relationships among the G-function, a
waveform, and the M-function. The relationship between the
G-function (g(t)), the M-function (m(t)), and a waveform
(w(1)) is given by the following expressions: if g(t)=0, then
m(t)=0; otherwise, if g(t)=1, then m(t)=1 if and only if w(t)
does not equal w(t-1) or m(t-1)=1, where g(t) is the value of
the G-function at time t, m(t) is the value of the M-function at
time t, and w(t) is the value of a waveform at time t. As
depicted, the conditions for an M-function to equal 1 are that
w(t) does not equal w(t-1), or that m(t-1) equals one. These
conditions correspond to transitions in the modeled wave-
form w(t). With the M-function and the G-function, the pre-
vious state of a signal can be related to multiple possible next
states of the signal with a compact representation. Each of
these relationships is referred to herein as a nondeterministic
transition function (“NTF”). FIG. 3 provides a diagram to
help illustrate how a sequence of NTFs can represent multiple
waveforms in a compact manner.

FIG. 3 depicts an example conceptual mapping of transi-
tions in multiple waveforms to NTFs. The mapping of time to
NTFsis referred to as a waveform set function (WSF). A WSF
304 specifies a set of waveforms 312, 316, 320, and 324. Each
of the waveforms 312, 316, 320, and 324 assumes a value of
either a 0 or a 1 at each instant of time. For example, wave-
form 312 assumes a value of 0 at all times before time t=0, and
at times t=0 through t=6, but transitions to a 1 at time t=7 and
assumes a value of 1 between times t=7 and t=9, and at all
times after time t=9. These waveforms can be grouped
together to form a single waveform set (compact multi-wave-
form), depicted by a waveform set diagram 308. The wave-
form set diagram 308 encodes information about the aggre-
gate behavior of the waveforms 312, 316, 320, and 324.
Associated with the waveform set diagram 308 is a waveform
set function (WSF) 304. The WSF 304 maps each unit of time
to an NTF. Each NTF relates a previous state of a waveform
or set of waveforms to a set of possible next states. Although
separated by a few layers of constructs, the compact multi-
waveform representations mentioned earlier are based upon
sequences of these NTFs. The NTFs, which can be considered
the building blocks, will be first described. Constructs that
build upon these NTFs will then be described. FI1G. 5 depicts
an example hierarchy of data constructs/objects built upon
NTFs revealing relationships between the previously men-
tioned phase tags and NTFs. FIG. 5 will be explored in more
detail after describing the data constructs individually.

Table 2 identifies NTFs employed for phase algebra based
RTL design evaluation.



US 9,251,304 B2

9 10
TABLE 2
Non-deterministic Transition Functions
Symbol for Waveform Set Diagram at time t
if follows  if follows if follows FF,
NTF Function Table FO or FL. F1 or FH if follows if follows FR, FS or FX
Name (x = don’t care) G-value att-1 att-1 FGatt-1 FN at t-1 att-1 Description (signal behavior at time t)
FO input output 0 not t t t t Signal is O (stable or falling edge).
(mp, wp) WN allowed :
(%, X) {0} (use FL ~ | ~ | ~~ | ~~ |
instead) I [ [ I
F1 input output 0 t not t t t Signal is 1 (stable or rising edge).
(mp, wp) WN : allowed : : :
(x, X) {1} | o~ (use FH e o | e | e
_ instead) _ _ _
FF input output 0 not t t t t Signal is either stable or falling
(mp, wp) WN allowed : : : (nondeterministic).
(x,0) {0} (use FL e | e | o | e e | e
x, 1) {0, 1} instead) I V. V. V.
FG input output 1 t t t t t Signal tray transition at most once within
(mp, wp) WN : : : : : time range having contiguous range of FG
©, %) {0, 1} |<— | < =3 | ] < ~~| <= (glitch-free).
1,0) {0} | I | |
“@y
FH input output 0 not t not t not Signal is stable 1 (High). Although the
(mp, wp) WN allowed allowed allowed  transition function is identical to F1, the
(%, X) {1} (use F1 ~ ~~mmme (use F1  ~~mmme (use F1  adjacency restriction implies there can be no
instead) instead) instead)  transition.
FL input output 0 t not not t not Signal is stable 0 (Low). Although the
(mp, wp) WN allowed allowed allowed  transition function is identical to FO, the
(%, X) {o (use FO (use FO (use FO  adjacency restriction implies there can be no
instead) instead) instead)  transition.
FN input output 0 t t t t t Signal is to be ignored. The NTF returns a
(mp, wp) WN : : : : : Null (empty) set, meaning that no waveform
(%, X) {} can be in any set specified using this NTF.
While this does not accurately describe a
signal, it is mathematically useful to
define operators which ignore the
contributions of an input.
FR input output 0 t not t t t Signal is either stable or rising
(mp, wp) WN allowed : : : (nondeterministic).
x,0) {0, 1} | (use FH e A e A e A
(x, 1) {1} o instead) J . [
FS input output 0 not not t not t Signal is Stable. It can be low or
(mp, wp) WN allowed allowed allowed high, but there can be no transition.
(x,0) {0} (use FO (use FO (use FO
X, 1 {1} instead) instead) o instead) o
FX input output 0 not not t t t Signal is completely nondeterministic
(mp, wp) WN allowed allowed : (stable, rising or falling).
(%, X) {0, 1} (use FR (use FR e | o | e e | e
instead) instead) e

The first column of Table 2 is a label given to each NTF. The
label in the first column of Table 2 is arbitrary. The second
column of Table 2 specifies the relationship between inputs to
the NTF and outputs that the NTF generates based on the
inputs provided to the NTF. The inputs to each NTF include a
previous waveform state denoted wp and a previous M-func-
tion state, denoted mp. The output of each NTF is a set of
possible next waveform states, denoted WN. Each NTF speci-
fies one value of a G-function thatequals O or 1, as noted in the
third column of Table 2. Columns four through eight of Table
2 include one or more adjacency restrictions. The adjacency
restrictions specify that if an NTF appears at time t-1, then
certain NTFs are prohibited at time t, based on the NTF that
appeared at time t-1. For example, NTF FF is prohibited at
time t if the NTF at time t-1 had been either FO or FL.
Additionally, each NTF is associated with a waveform set
diagram symbol, shown in columns four through eight of

55

65

Table 2, that can appear at time t given an NTF attime t-1. For
example, the NTF FO, shown in row 1 of Table 2, exhibits the
waveform set diagram symbol depicted in column 6 at time t
if the NTF preceding FO at time t-1 was FG. However, if the
NTF preceding FO at time t—1 was FF, FR, FS, or FX, then the
waveform set diagram symbol of F0 is as depicted in column
8 of Table 2. A waveform set diagram symbol illustrates the
set of possible waveform states at time t, including whether
such states can differ from the states at time t-1, indicated by
a vertical line, which represents a transition or possible tran-
sition at time t. These NTFs are combined in sequences to
form compact multi-waveform representations that comply
with the above defined adjacency restrictions. When propa-
gating compact multi-waveform representations throughout a
design, the compact multi-waveform representations are
decomposed into the NTFs in order to apply the appropriate
NTF operators upon the constituent NTFs.



US 9,251,304 B2

Table 3 identifies the NTF operators.
TABLE 3
NTF Operators
Prototype (Call
Function Name Syntax) Definition (Lookup Table) Description
ntf not ntf y = ntf not (ntf a) ntfa: FO Fl1 FF FG FH FL FN FR FS FX Used to determine the set of waveforms
ntf y: F1 FO FR FG FL FH FN FF FS FX produced by an inverter.
input input ntf b
ntfa FO Fl FF FG FH FL FN FR FS FX
ntf and ntf y =ntf and FO FO FO FO FO FO FL FO FO FO FO Used to determine the set
(ntf_a, ntf b) F1 FO F1 FX FX Fl1 FL FN FR FR FX of waveforms produced by an AND
FF FO FX FF FX FF FL FF FX FF FX gate.
FG FO FX FX FX FG FL FG FX FG FX
FH FO F1 FF FG FH FL FN FR FS FX
FL FL FL FL FL FL FL FL FL FL FL
FN FO FN FF FG FN FL FN FR FN FX
FR FO FR FX FX FR FL FR FR FR FX
FS FO FR FF FG FS FL FN FR FS FX
FX FO FX FX FX FX FL FX FX FX FX
input input ntf b
ntfa FO Fl FF FG FH FL FN FR FS FX
ntf xor ntf y =ntf xor (ntf_a, FO FO Fl1 FX FX Fl FO FO FX FX FX Used to determine the set
ntf b) F1 F1 FO FX FX FO Fl1 Fl FX FX FX of waveforms produced by
FF FX FX FX FX FR FF FF FX FX FX anXOR (exclusive-OR) gate.
FG FX FX FX FX FG FG FG FX FG FX
FH F1 FO FR FG FL FH FN FF FS FX
FL FO F1 FF FG FH FL FN FR FS FX
FN FO F1 FF FG FN FN FN FR FN FX
FR FX FX FX FX FF FR FR FX FX FX
FS FX FX FX FG FS FS FN FX FS FX
FX FX FX FX FX FX FX FX FX FX FX
input input ntf d
ntf ¢ FO Fl FF FG FH FL FN FR FS FX
ntf trans_latch ntf q= FO FS FS FS FS FS FS FS FS FS FS Used to determine the set
ntf trans_latch (ntf c, F1 FO F1 FX FX Fl1 FO FN FX FX FX of waveforms produced by
ntf d) FF FF FR FF FG FS FS FN FR FS FX azero-delay transparent latch.
FG FX FX FX FX FX FX FN FX FX FX
FH FO F1 FF FG FH FL FN FR FS FX
FL FS FS FS FS FS FS FS FS FS FS
FN FN FN FN FN FN FN FN FN FN FN
FR FF FR FX FX FR FF FN FX FX FX
FS FF FR FF FG FS FS FN FR FS FX
FX FX FX FX FX FX FX FN FX FX FX
input input ntf d
ntf ¢ FO Fl FF FG FH FL FN FR FS FX
ntf trans_latch_const ntf q= FO na na na na FH FL na na FS na Used to determine the set
ntf trans_latch_const F1 na na na na FH FL na na FS na ofwaveforms produced by
(ntf_c, ntf d) FF na na na na FH FL na na FS na azero-delay transparent
FG na na na na FH FL na na FS na latch, assuming that its data
FH na na na na FH FL na na FS na inputis constant, na means
FL na na na na FH FL na na FS na the given ceil of the table
FN na na na na FN FN na na FN na should never be accessed.
FR na na na na FH FL na na FS na
FS na na na na FH FL na na FS na
X na na na na FH FL na na FS na




US 9,251,304 B2

TABLE 3-continued
NTF Operators
Prototype (Call
Function Name Syntax) Definition (Lookup Table) Description
input input ntf r
ntfa FO Fl FF FG FH FL FN FR FS FX
ntf unit_delay_range ntf y= FO FO FR FX FX FR FO FL FR FR FX Assume ntf risthe NTF for a range of
ntf unit_delay_range F1 FF Fl FF FX Fl FF FH FX FF FX time (tl through t2), except that if
(ntf_a, ntf r) FF FF FX FF FX FX FF FF FX FF FX ntf_r=F0, the range is assumed to
FG FX FX FX FG FX FX FG FX FG FX contain FO followed by FL; and
FH FF FH FF FG FH FF FH FX FF FX likewise. F1 means F1 followed by FH.
FL FL FR FX FG FR FL FL FR FR FX Assume ntf ais the NTF for time t1-
FN FO F1 FF FG FH FL FN FR FS FX 1. This function returns a new NTF to
FR FX FR FX FX FR FX FR FR FR FX represent the same time range
FS FF FR FF FG mna na FS FR FS FX following a unit delay (i.e., output of
FX FX FX FX FX FX FX FX FX FX FX unitdelay block (UDB)). na means the
given cell of the table should never be
accessed.
input input ntf b
ntfa FO Fl FF FG FH FL FN FR FS FX
ntf is_subset bool_y = FO T F T F F F F F F T Usedtodetermine if one
ntf is subset (ntf_a, F1 F T F F F F F T F T setofwaveformsisa
ntf b) FF F F T F F F F F F T subsetofanotherset of
FG F F F T F F F F F T waveforms.
FH F T T T T F F T T T
FL T F T T F T F T T T
FN T T T T T T T T T T
FR F F F F F F F T F T
FS F F T T F F F T T T
FX F F F F F F F F F T
input input ntf b
ntfa FO Fl FF FG FH FL FN FR FS FX
ntf fix_adjacent ntf y = FO FL F1 na FG na FL FN FR FL FR Returns equivalent but valid
ntf fix_adjacent F1 FO FH FF FG FH na FN na FH FF value for ntf b when it
(ntf_a, ntf b) FF FO F1 FF FG mna na FN FR FS FX follows ntf ain time. na
FG FO F1 FF FG na na FN FR FS FX means the given cell of the
FH FO FH FF FG FH na FN na FH FF table should never be
FL FLL. F1 na FG na FL FN FR FL FR accessed.
FN FO F1 FF FG FH FL FN FR FN FX
FR FO F1 FF FG na na FN FR FS FX
FS FO F1 FF FG na na FN FR FS FX
FX FO F1 FF FG na na FN FR FS FX
45

The NTF operators correspond to operations of circuit com-
ponents (e.g., ntf_and) and some operations employed for
coherency (e.g., ntf fix_adjacent and ntf is_subset). The
operations can be implemented with look ups because the
look up tables are constructed based on the signal behavior
represented by the NTFs and the foundational functions that
capture transitional behavior. Table 3 identifies eight NTF
operators. The ntf_not operator determines the NTF produced
at the output of an inverter based on the NTF provided to the
input of an inverter. The ntf_and operation determines the
NTF produced at the output of an AND gate, given NTFs
provided at the inputs of an AND gate. The ntf_xor operator
determines the NTF produced at the output of a XOR gate
given NTFs provided at the inputs of a XOR gate. The
ntf_trans_latch operator determines the NTF at the output of
a zero-delay transparent latch based on the NTFs provided at
the inputs of a zero-delay transparent latch. The ntf t
rans_latch_const operator determines the NTF at the output
of'a zero delay transparent latch given a first NTF that corre-
sponds to a constant data input to the zero-delay transparent
latch and a second NTF input that corresponds to the clock
input to the zero-delay transparent latch. The ntf_unit_de-

55

lay_range operator determines the NTF output of a unit delay
component based on NTF inputs to the unit delay component.
The ntf_is_subset operator determines whether a first NTF is
a subset of a second NTF, returning a value of true if a first
NTF is a subset of a second NTF. The ntf_fix_adjacent opera-
tor returns an equivalent but valid value for a second NTF
when the second NTF follows a first NTF in time. Thus, the
ntf fix_adjacent operator ensures that the adjacency restric-
tions associated with N'TFs are observed. Column four of
Table 3 includes descriptions similar to the foregoing. Col-
umn two of Table 3 indicates example syntax that can be
employed to call the corresponding operator named in col-
umn one of Table 3. Table 3 employs the syntax
ntf_output=ntf_operator (ntf inputl, ntf input2) for a dual
input operator and ntf_output=ntf_operator (ntf input) for a
single input. Column three of Table 3 indicates the look up
tables associated with each of the NTF operators of column
one of Table 3. The look up tables of column three of Table 3
indicate the NTF output generated based on the NTF input
provided to each NTF operator listed in column one of Table
3.



US 9,251,304 B2

15

FIGS. 4A-4B depict example NTF sequences and the
information encoded in the sequences. In this description, a
sequence of NTFs is referred to as a clocked waveform set
specification (CWSS). FIG. 4A depicts a sequence of NTFs
relative to a virtual clock 404A. A virtual clock is a clock
signal generated by a source that might be external to the
circuit design being evaluated. Three timing parameters
define any virtual clock: tP, denoting the period of a clock,
which is the time interval from any rising edge to the next; tD,
denoting the duty cycle ofthe clock, which is the time interval
from any rising edge to the next falling edge; and tO, denoting
the offset of the clock, which is the earliest non-negative time
at which the clock rises. Each CWSS consists of eight NTFs.
Each NTF is associated with a numerical value, ranging from
0to 7, referred to as a CWSS slot. The CWSS slot identifies
one N'TF within a CWSS. Each slot is associated with certain
times within a WSF. Table 4 indicates how the timing param-
eters of a virtual clock correlate to the constituent NTFs of a
CWSS.

TABLE 4

Virtual Clock Information

16
TABLE 4-continued

Virtual Clock Information

Relation to Times (in terms of virtual clock value of
5 corresponding
Slot virtual clock parameters tP, tD, tO) wsi{(t)
2 just after rising edge All times t such that ((t — tO) wsf(t) = ntf2
modulotP) =1
3  betweenrising and  All times t such that 1 <((t - tO) wsf(t) =ntf3
10 falling edges modulo tP) <tD -1
4 just before falling All times t such that ((t - tO) wsf(t) = ntf4
edge modulotP)=tD -1
5  attime of falling All times t such that ((t - tO) wsf(t) = ntf5
edge modulo tP) =tD
6  just after falling edge All times t such that ((t - tO) wsi(t) = ntf6
15 modulotP) =tD + 1

20

Relation to Times (in terms of virtual clock value of
corresponding 25
Slot virtual clock parameters tP, tD, tO) wsi{(t)
0 just before rising All times t such that ((t - tO) wsf(t) = ntf0
edge modulo tP) =tP - 1
1 attime of rising edge All times t such that ((t - tO) wsf(t) = ntfl

modulo tP) =0

30

All times t such that tD + 1 <
((t - tO) modulo tP) <tP - 1

7  between falling and
rising edges

wsf(t) = ntf7

In particular, Table 4 relates each CWSS slot, shown in the
first column, to a set of times related to virtual clock timing
parameters indicated in the third column, which, in turn,
relate to NTFs and WSF's indicated in the fourth column. FIG.
4B depicts a diagram of a set of waveforms 416C, which can
be expressed as a CWSS 404C, consisting of CWSS slots
408C, cach CWSS slot 408C corresponding to an NTF 412C.
In FIG. 4B, the notation tR refers to the time of a rising edge
of a virtual clock associated with a CWSS, which also corre-
sponds to slot 1 of the CWSS in this depiction. The notation
tF refers to the time of a falling edge of the same virtual clock,
which also corresponds to slot five of this CWSS.

The CWSS construct has operators that are abstractions of
the NTF operators. Table 5 identifies the CWSS operators.

TABLE 5

CWSS Operators

Function Name

Prototype (Call Syntax)

Definition (Implementation)

Description

Ccwss_not
cwss_and
CWSS_XOr
cwss_trans_latch

cwss_trans_latch_const

cwss_fix_latch

cwss_unit_delay

CWSS_y = cwss_not
(cwss_a)

cwss_y = cwss_and
(cwss_a, cwss_b)
CWSS_Y = CWSS_XOr
(cwss_a, cwss_b)
cwss_q = cwss_trans_latch
(cwss_c, cwss_d)
cwss_( =
cwss_trans_latch_const
(cwss_c, cwss_d)
cwss_y = cwss_fix_latch
(cwss_a)

cwss_y = cwss_unit_delay
(cwss_a)

for each slot 1, cwss_y[1] =
ntf not (cwss_a[1])
See generic algorthim

See generic algorthim
See generic algorthim

See generic algorthim

See separate algorthim

cwss_y = (cwss_a[0],
cwss_a[0], cwss_a[1],

ntf unit_delay_range(cwss_a[2],
cwss_a[3]), cwss_a[4],
cwss_a[4]), cwss_a[5]

ntf unit_delay_range(cwss_a[6],
cwss_a[7]))

Calculates the CWSS produced
by an inverter

Calculates the CWSS produced
by an AND gate

Calculates the CWSS produced
by an XOR (exclusive-OR) gate
Calculates the CWSS produced
by a zero-delay transparent latch
Calculates the CWSS produced
by a zero-delay transparent latch
assessing the data input is constant
Replaces any occurrence of FX
in slots 0-2 and 4-6 with FG if
followed by FS and NOT
precoded by FG This has no
semantic effect, but allows the
CWSS to subset-match CWSS’s
containing FG’s (Can’t replace in
slots 3 and 7 since those
represent time ranges. )
Calculates the CWSS produced
by a unit delay block (UDB),
assuming a “timed path” i.e. we
assume the stability windows
around the rising or falling edge,
if any, are preserved. Notice that
slots 0 and 4 retain their pre-
delayed values. We assume that
neither slots O nor 4 contain FO or
F1, otherwise we would need to
fix possible adjacency violations.



US 9,251,304 B2

17
TABLE 5-continued

18

CWSS Operators

Function Name Prototype (Call Syntax)

Definition (Implementation)

Description

cwss_path_delay cwss_y = cwss_path_delay

(type, cwss_a)

See separate algorthim

bool_b = cwss_is_subset
(cwss_a, cwss_b)

cwss_is_subset See separate algorthim

Calculates the CWSS produced
by a path delay block (PDB),
assuming a path which is timed to
the leading or trailing edge of the
virtual clock, as indicated by the
type argument.

Determines if the set of
waveforms specified by one
CWSS is a subset of the set
specified by another.

15

The CWSS operators correspond to operations of circuit
components (e.g., cwss_and) and some operations employed
for coherency (e.g., cwss_is_subset). As can be seen by the
implementation definition column, these operators rely on
algorithms (referred to as “separate algorithm™ and “generic
algorithm”). These algorithms invoke the NTF operators for
each NTF that constitutes a CWSS. These algorithms are
discussed later. There are nine CWSS operators. These
include cwss_not, cwss_and, cwss_xor, cwss_trans_latch,
cwss_trans_latch_const, cwss_is_subset, and cwss_unit_de-
lay, which correspond to the counterpart NTF operators but
perform operations on CWSSs. The CWSS operator
cwss_{fix_latch corresponds to the NTF operator ntf_fix_ad-
jacent, but for a particular use related to a transparent latch.

20

example CWSS operator syntax. Column four of Table 5
describes the function of each CWSS operator. Column three
of'Table 5 refers to the algorithms that implement seven of the
nine CWSS operators. In one embodiment, the cwss_not
operator can be implemented in a for loop that iterates
through each slot of the CWSS,; invoking the ntf_not operator
for each CWSS slot. Since the slots of a CWSS correspond to
NTFs, the CWSS operators generally are implemented by
calling NTF operators, manipulating each of the eight NTFs
that comprise the CWSS. The cwss_unit_delay operator is
implemented through the equation listed in row seven, col-
umn three of Table 5.

Table 6 identifies 55 phase types and relationships with
CWSSs and phase type groups. Each phase type can be con-

The CWSS operator cwss_path_delay determines the CWSS 30" sidered a construct (e.g., variable or notation) that represents
generated by a path delay block. Column one of Table 5 lists a set of waveforms as a function of a non-specific virtual
the CWSS operators. Column two of Table 5 indicates clock, as mentioned above.
TABLE 6
Phase Types
Number Symbol Name Waveform Set Diagram CWSS Group
1 <> Null R {F R {FN,FN, GN
GRIOE) e o oot £ ettt PN, N,
FN, FN,
FN, FN}
2 0 Constant R ‘F R . {FL,FL, GO
Zero FL, FL,
FL, FL,
"""""""""""""""""""""""""""""""" FL, FL}
3 1 Constant R tF R {FH,FH, Gl
one FH, FH,
FH, FH,
FH, FH}
4 7 Unknown R tF R {FS,FS, GS
constant FS, FS,
FS, FS,
""""""""""""""""""""""""""""""""" FS, FS}
5 C Clock R F R {FL,F1, GCL
‘ ‘ N FH, FH,
FH, FO,
| | | FL, FL}
6 ~C Inverted R F . . . . R . {FH,F0, GCT
Clock  oomnn | | | FL, FL,
FL, Fl1,
L | [ FH, FH}
7 o Delayed R F R {FL,FL, GCL
Clock | | ‘NNFI, FH,
FH, FH,



US 9,251,304 B2

TABLE 6-continued
Phase Types
Number Symbol Name Waveform Set Diagram CWSS Group
8 ~CHl Delayed R T R . {FHLFH, GCT
Inverted oo | | . FO,FL,
Clock | ‘ “ FL, FL,
------------------------- -- F1,FH}
9 Pulsed -~ o R {FL,F1, GCL
Clock ‘NNNN‘ ‘NNNN‘ FO, FL,
FL, FL,
________ b e el L FLY
10 (O Pulsed -~ o R {FL,FL, GCT
Inverted ] FL, FL,
Clock FL, F1,
| FO,FL}
1 ~cl Inverted R - F R {FH, F0, GCI
Pulsed } ‘ } ‘M F1,FH,
Clock | | | | FH, FH,
""" mos FH, FH}
12 ~~O) Inverted R F R {FH,FH, GCI
Pulsed | | FH, FH,
Inverted | | FH, FO,
Clock —_— F1,FH}
13 CIE Edge R F R {FL,F1, GCE
Clock |~ |~ |~ FO, FL,
I I | LI,
"""""""""""""""""""" "~ FO,FL}
14 ~CIE Inverted R o R {FH,F0, GCI
Edge } ‘ } ‘ } ‘NN F1 N FH,
Clock FH, FO,
- | L"'J L"'J F1,FH}
15 C%* Low- R F R {FL,FR, GGL
Gated | | NSNS FS, FS,
Clock ‘ “ ‘ FS, FO,
----------------------------------------------------------- FL, FL}
16 (~C)%* Low- R F R {FS,F0, GGT
Gated  onn | | | FL,TL,
Inverted | | | FL, FR,
Clock ~ tm77mmmimmommsmooss o mmmmmmssmssiososossosos mmmmmmmmmommmones FS, FS}
17 CHI%* Low- R F - R {FL,FL, GGL
Gated | | |~ FR, FS,
Delayed | | | FS, FS,
Clock ~ 777TTTTTTTTSTTToTT smmomoomomoososoimsooos mmoomomommoooones FO,FL}
18 (~CW1%*  Low- R F - @® . {FS,FS, GGT
Gated oo | | | FO, FL,
Delayed | | | FL, FL,
Inverted ~  TTTTTTTTTTTNTTOOTT sTooTooomoomoosoimmooooo omooomoomooooootos FR,FS}
19 Cl%* Low- R F R {FL,FR, GGL
Gated ‘NNNN‘ ‘NNNN‘ FO, FL,
Pulsed | | | | FL, FL,
Clock — —'— FL,FL}
20 (ON%*  Low- R F R {FL,FL, GGT
Gated ‘NNNN‘ FL, FL,
Pulsed | | FL, FR,
Inverted =~ TTTTTTTmTomsotoos mmmomosmosiososlesssos mmsmsmmsmosooeo-e- FO,FL}
21 (~CH)%*  Low- R F R {FS,F0,  GGI
Gated | | | |~ FR,FS,
Inverted “ ‘ “ ‘ FS, FS,
Pulsed =~ "tmmmmmimmmmlimmmmss mmmsmsmmsmsmosmomosoos smssmsmsoosesmooes FS, FS}
2 (~(~C)1)%* Low- -~ T -~ {FS,FS, GGI
Gated | | FS, FS,
Tnverted “ ‘ FS, FO,
Pulsed =~ "mtmtmmooomoomooo mmomomommosimooshoooooo oomooommomosooooes FR,FS}



US 9,251,304 B2

TABLE 6-continued
Phase Types
Number Symbol Name Waveform Set Diagram CWSS Group
23 C!E%* Low- R F R {FL,FR, GGE
S — -~ — R
Clock ~ "mmmmmmimmmmimmsmss smmsmmsmsmsimcmoioomos smsmmsmsmosimmoshes FO,FL}
24 (~CI!E)%*  Low- R - F . R {FS,F0, GGI
Gated ' : FR, FS,
Inverted ‘1 “ ‘} “ H “M FS, FO,
Edge — — —'— FR,Fs}
25 C% High- R F R {FS,F1, GCL
Gated | | | FH, FH,
Clock ‘ ! ! FH, FF
_______ | e ] e
26 (~C)% High- R F R {FH,FF, GCT
Gated | | | FS, FS,
Inverted FS, F1,
Clock | | I FH, FH}
27 CH1% High- R - F- R - {FS,Fs, GCL
Gated | | | F1,FH,
Delayed “ “ “ FH, FH,
Clock ~ =rm=======- 0 emmmmms mmmmmsmmsmomoee FF, FS}
28  (~C#1%  High- R - R {FH,FH, GCT
Gated | | | FF, S,
Delayed FS, FS,
Inverted R | .. F1,FH}
29 1Y% gigh(—i R F R 1{:1;5%1;1, GCL
Ie
Pulsed ‘}NNNN“ HNNNN“M FS, TS,
Clock ~ =======  ls====== mmsmeseosseseeo-s-eoo smmeo-e-ee -- FS,FS}
30 (~C)1% High- R F R {FS,FS, GCT
Gated | | FS, FS,
Pulsed FS, F1,
Inverted =~ --mmmmmmmmmmmososs o mmo-m-e--eo | . FF, FS}
31 (~C!1)% gi%h(—i R F R 1{:1;HF II—:IF GCI
Inil/eened ‘{NNNN“ HNNNN“M FH FH
Pulsed -0 e FH, FH}
32 (~(~O)1)% High- R ‘F R {FH, FH, GCI
Gated | | FH, FH,
Inverted L | FH, FF,
Pulsed bk F1,FH}
33 CIE% gigh(—i R R - 1{:1;5%1;1, GCE
Ie
E;lgee ‘}NNNN“ T HNNNN“: FS, F1,
Clock FF, FS}
34 (~CIlE)%  High- F R {FH,FF, GCI
Gated
Inverted
Edge
35 C%? Double- R F R {FS,FR, GGL
Clock A | A LT
oK e el N et (I FS, ES)
36 (~C)%? Double- R tF tR {FS,FF, GGT
Gated | A | FS, FS,
Inverted A% | A% FS, FR,
Clock ~  '777777 tTmoomomSmo smmomommmossossosomoooos o msmmmmmoms emmmses FS, FS}
37 CH1%? Double- R F - R . {FS,FS, GGL
Gated A | A~ FR, FS,
Delayed | v | FS, FS,
Clock ~ s=======sssmsi-ssssss dmsoseososoosoossoosoo mesoseseososeoeo e FF, FS}



US 9,251,304 B2

TABLE 6-continued
Phase Types
Number Symbol Name Waveform Set Diagram CWSS Group
38 (~CM1%?  Double- R o .. 4 . {FS,FS, GGT
Gated | A j~n TEFS,
Delayed v ‘ v FSFs,
Inverted — FR,FS}
39 Ci1%? Double- R - @R . {FS,FR, GGL
Gated FF, FS,
Pulsed ? \‘, ‘A | FS, FS,
Clock ~ mm==mm=lemmmmmmmmm mmmmmemoeomeoeooen ool e FS, FS}
40 (~O)11%2  Double- T N . . @w . [{FS,FS, GGT
Gated A FS, FS,
Pulsed | v FS, FR,
Inverted — FF, FS}
41 (~C!1)%?  Double- Cm o F . . @ . {FS,FF, GGI
Gated | A . . | A~ FR,FS,
Inverted v | v | FS, FS,
Pulsed ~  "TTTTTT TmoTmmooomos mommoommsmmmssmssomsos mmommommmsemmeshes FS, FS}
42 (~(~O)11)%? Double- Cm . . . @® . ({FS,FS, Gol
Gated |~ A FS, FS,
Inverted v | FS, FF,
Pulsed =~ 77rmmmmmomomommoos smmmommmomm mmommiommoosn mmmmmmmmmommooee FR,FS}
43 CIE%? Double- R N .. @r . {FS,FR, GGE
Gated R Ar~en| A ~LF, FS,
Edge v v | v ISR,
Clock — — —— —FF, FS}
4 ~CIE)%? Double- : tR : : : : tF : : : : tR . {FS,FF, GGl
Gated v~ A . A . n~mmAnER, ES,
Inverted v | v | v | FS, FF,
27 FR,FS}
45  C@LPGF  Latched R . {FS,FS, GLL
Leading < FG, FG,
Phase “ FG, FG,
Glitch-  mmmmmmmmmmeeml T e e e FS, FS}
46  C@LGF Latched R . {FS,FS, GLL
Leading _>.~~~~~~N~~~~;‘< FG, FG,
Glitch- | FG.FG,
Free =~ mmmmmmmmmmmeml o me o mm o me e o e oo FG, FG}
47 c@Lp Latched DR N . . w@m . {FS,FS, GIL
Leading oo [N AR Vo oy . FX, FX,
Phase | ‘ | | [ [ FX,FX,
——————————————————————————————————————————————————————————— FS, FS}
4/ CaL Latched : tR : : : : tF : : : : tR . {FS,FS, GLL
Leading
49 C@TPGF  Latched R N . . w . {FGFG, GILT
Trailing i |<e i = 3 s D55 B,
Phase : : = AR " FS, FS,
Glitch- e e I S - FG, FG}
50 C@TGF  Latched Cm N . . @w . {FG,FG, GIT
Trglhng S DINNBINND BINNIS I a3l NS |- =i L= i i >t G, FG,
Glitch- . . . . . . . . . . TS, Fs,
Free L e \ D ‘.. ‘.- ‘.- '-_FG,FG}
51 c@tp Latched . N .. wm . {FX,FX, GLT
Trailing N | | | | | TS, TS,
Phase | | “ “ “ “ “ FS, FS,
"""""""""""""""""""""""""""""" FX, FX}
52 Cc@r Latched R - N .. wm . {FXFX, oIT
Trailing NNFNNN‘NNNNFNNN.‘NN NNI‘NNNINNNNNNNNI‘NNN;‘NN NNI‘NNNNI‘NNNN‘NNNINM FX, FX,
FS, FS,



US 9,251,304 B2

TABLE 6-continued
Phase Types
Number Symbol Name Waveform Set Diagram CWSS Group
S3  C@E Latched R : GLE
e e e -
Fdee o
54 % All R GA
waveforms IVNUNNINVNN NN oY
R N N
55 ~ Unknown . R GU
(default) N N N I

Column one of Table 6 is a number assigned to each phase
type. The assigned numbers can be referred to as phase type
order numbers. Selection of a phase type as a result of an
operation that models a circuit component (e.g., an AND gate
or inverter) conforms to this defined order of phase types.
Algorithms discussed later will refer back to this ordering.
Column two of Table 6 includes example symbols assigned to
each phase type. Column three of Table 6 indicates names
assigned to each phase type for ease of reference. Column
four of Table 6 includes a waveform set diagram illustrating
the set of waveforms designated by the phase type. The wave-
form set diagram is a function of a virtual clock, as indicated
by the markers tR and tF in column four of Table 6, which
designate the rising and falling times, respectively, ofa virtual
clock, and which may thus vary from one virtual clock to
another. Accordingly, each phase type symbol corresponds to
a waveform set diagram. Thus, operations performed on a
phase type are operations performed on a set of waveforms,
each depicted in column four of Table 6. Column five of Table
6 indicates a CWSS associated with each phase type. Each
CWSS is comprised of eight NTFs, which collectively repre-
sent the waveform set diagram of column four of Table 6.
Column six is a group name assigned to each phase type,
referred to herein as phase type groups.

Table 7 identifies phase type groups (PTGS).

TABLE 7

Phase Type Groups,

Phase
Type
Group Member Phase

(PTG) Type(s) Description

GO 0 Constant zero.
Gl 1 Constant one.
GA % The set of all possible waveforms. Used

whenever no other phase type can adequately
and completely express the actual set
produced by an operator. Could be used by a
designer to specify that an input is
completely nondeterministic.

Edge-pulsed ungated or high-gated clock,
(Pulses on every edge--falling and rising--of
the virtual clock.) The clock is guaranteed to
be active (high) during both phases of every
cycle. A latch clocked by such a clock and
having a constant data input will have a
constant output.

GCE CIE, C!E%

20

25

30

35

40

45

50

55

60

65

TABLE 7-continued
Phase Type Groups,
Phase
Type
Group Member Phase

(PTG) Type(s) Description

GCI ~C!1,~(~O)!1, Inverted pulsed ungated or high-gated clock.
~CIE, (~C!1A)%A, Can also be thought of as “invalid clock”
('“('“C)HZ% R because such a clock should not be directly
(~C!E)% attached to the clock input of a latch.

GCL C,C#1,C!, Leading-phase ungated or high-gated clock.
C% ,C#1% , The clock is guaranteed to be active (high)
C11% during the first (leading) half of the virtual

clock’s cycle. A latch clocked by such a clock
and having a constant data input will have a
constant output.

GCT ~C,~C#l, Trailing-phase ungated or high-gated clock.
(~O)!1, (.:C)%A, The clock is guaranteed to be active (high)
(~C)#1%ﬁ R during the second (trailing) half of the virtual
(~C)!11% clock’s cycle. A latch clocked by such a

clock and having a constant data input will
have a constant output.

GGE C!E%*, C!E%? Edge-pulsed low- or double-gated clock.
(Pulses on every edge--falling and rising--of
thevirtual clock.) Clock may be low
throughout any given phase of any given
cycle. A latch clocked by such a clock and
having a constant data input will not have a
constant output (since it is unpredictable
when the latch will sample the input)

GGI  (~C!1)%*, Inverted pulsed low- or double-gated clock.
(~(~O)11)%*, Can also be thought of as “invalid clock”
(~CIE)%* because such a clock should not be directly
(~C11)%7?, attached to the clock input of a latch.
~(~O)11)%?,

(~C!E)%?

GGL C%*, C#1%*, Leading-phase low- or double-gated clock.
C11%*, C%?, The clock may be active (high) during the
C#1%?, C!1%? first (leading) half of the virtual clock’s cycle;

or it may be low or high throughout the
cycle. A latch clocked by such a clock and
having a constant data input will not have a
constant output (since it is unpredictable
when the latch will sample the input).

GGT (~C)%*, Trailing-phase low- or double-gated clock.
(~C)#1%*, The clock may be active (high) during the
(~C)11%*, second (trailing) half of the virtual clock’s
(~C)%?, cycle; or it may be low or high throughout
(~C)#1%?, the cycle. A latch clocked by such a clock
(~C)!11%? and having a constant data input will not

have a constant output (since it is unpredict-
able when the latch will sample the input).

GLE C@E Driven by latch(es) clocked by edge-pulsed

or both leading- and trailing-phase clocks.



US 9,251,304 B2

27
TABLE 7-continued

Phase Type Groups,

Phase
Type
Group Member Phase

(PTG) Type(s)

Description

28
A phase type group represents one or more phase types. For
example, the phase type group GCE represents a grouping of
two phase types. Phase type groups can be used to differen-
tiate among phase types that have the same CWSS. Phase
types are assigned to a phase type group based on the intended
use of the phase type. For instance, certain phase types are

GLL g%igcg@i@LGF’ Dlrivlf: by lateh(es) clocked by leading-phase implemented to designate clock signals, while other phase
A clocks. . . .
GLT C@TPGF, C@TGF, Driven by latch(es) clocked by trailing-phase 1o types are implemented to designate data signals or constant
C@Tp, C@T clocks. , value signals. Column one of Table 7 indicates example iden-
GN <> Null phase type, representing an empty set of . .
waveforms. Used to mean that a given signal tifiers to designate each phase type group. Column two of
should be ignored for the purposes of Table 7 indicates the phase types that are members of each
classifying downstream signals. This could
be used as the default phase type for any 15 phasetype group. Column three of Table 7 provides a descrip-
circuit input which is not assigned a phase 6 £ h oh ¢
type by the designer. ion of each phase type group.
Gs 2 Stable (constant) signal: either constant zero The combination of a phase type and a phase type group
or constant one (we don’t know which). 1 . £ Itinl £ based
Gu Unknown phase type. This is the default allows compact representation ol multiple wavetorms base
phase type assigned to all internal nets. it 5 On NTFs and the adjacency restrictions placed on the NTFs.
indicates those nets for which the .
propagation algorithm has not yet calculated In other words, phase types are representations of CWSSs and
a phase type. In general, this will not appear phase type groups allow for CWSSs to be overloaded. Tables
on anly ?es after phase propagation has 8 and 9 identify operators for phase types and phase type
completed. K .
groups. These operators invoke the previously defined CWSS
and NTF operators.
TABLE 8
Phase Type Operators
Function Prototype
Name (Call Syntax) Definition (Implementation) Description
pt_not pt_y =pt_not pt_y = first_matching pt (ewss_not (pt_to_ cwss(pt_a)), Calculates the phase type produced
(pt_a) ptg_not (pt_to_ptg(pt_a))) by an inverter.
pt_and pt_y=pt_and pt_y = first_matching pt (cwss_and (pt_to_cwss(pt_a), Calculates the phase type produced
(pt_a, pt_b) pt_to_cwss(pt_b)), ptg_and (pt_to_ptg(pt_a), pt_to_ptg(pt_b))) by an AND gate.
pt_xor pt_y=pt_xor pt_y = first _matching pt (cwss_xor (pt_to_ cwss(pt_a), Calculates the phase type produced
(pt_a, pt_b) pt_to__cwss(pt_b)) ), ptg_xor (pt__to_ptg(pt_a), by an XOR (exclusive-OR) gate. This
(pt_to_ptg(pt_b))) algorithm produces a more specific
result than decomposing XOR into
ANDs and inverters.
pt__latch pt_y= if ( pt_to_ptg(pt_d) is GO, G1, or GS) { // data is constant Calculates the phase type produced
pt_latch Let cwss__predelay = cwss__trans_ latch__const by a latch. Note that the latch circuit
(pt_c, pt_d) ( pt_to__cwss(pt_c), pt_to_cwss(pt_d)) primitive has a delay of one time unit.
We could optionally model a zero-
else { delay latch by omitting the call to
Let cwss__predelay = cwss__trans_ latch cwss__unit_ delay.
( pt_to__cwss(pt_c), pt_to_cwss(pt_d))
pt_y = first_matching pt
( cwss__unit__delay (cwss__fix__latch (cwss__predelay)),
ptg_latch(pt_to_ ptg(pt_c), pt_to_ptg(pt_d)))
pt_flipflop pt_y= pt_y = pt_latch (pt_c, pt_latch (pt_not (pt_c),pt_d)) Calculates the phase type produced
pt_flipflop by a flip-flop. Leverages the fact that a
(pt_c, pt_d) flip-flop can be implemented by two
transparent latches with opposite-
phase clocks.
pt_unit_ delay pt_y= pt_y = first _matching pt (ewss_unit delay (pt_to_ cwss(pt_a)), Calculates the phase type produced
pt_unit_delay ptg_unit_delay (pt_to_ptg(pt_a))) by a unit delay block (UDB).
(pt_a)
pt_path_delay pt y= if (pt_to_ ptg(pt_a)is GLL) { Calculates the phase type produced
pt_path_ delay pt_y = first_matching pt ( cwss_path_ delay (leading, by a path delay block (PDB).
(pt_a) pt_to_cwss(pt_a)), GLL );

else if ( pt_to_ ptg(pt_a) is GLT ) {
pt_y = first__matching pt ( cwss_path_ delay (trailing,
pt_to_cwss(pt_a)), GLT );

else {
pt_y=pt_a;

}




US 9,251,304 B2

29

The phase type operators included in Table 8 correspond to
circuit components and to NTF and CWSS operators. The
phase type operators operate upon the higher level construct
of phase types by invoking the operators of lower level con-
structs. Since phase types correspond to sets of waveforms,
the phase type operators represent operations on sets of wave-
forms. In Table 8, seven example phase type operators are
listed in column one: pt_not, pt_and, pt_xor, pt_latch, pt_flip-
flop, pt_unit_delay, and pt_path_delay. The pt_not operator
determines the phase type output of an inverter given a phase
type input. The pt_and operator determines the phase type
output of an AND gate given at least two phase type inputs.
The pt_xor operator determines the phase type output of an
XOR gate given at least two phase type inputs. The pt_latch
operator determines the phase type output of a transparent
latch given a clock signal phase type input and a data signal
phase type input. The pt_flipflop operator determines the
phase type output of a flip-flop given a clock signal phase type
input and a data signal phase type input. The pt_unit_delay
operator determines the phase type output of a unit delay
given a phase type input. The pt_path_delay determines the
phase type output of a path delay block given a phase type
input. The foregoing description is included in column four of
Table 8, which also describes the purpose of each phase type
operator. Column two of table 8 provides example syntax for

30

the phase type operators. The example phase type operator
syntax is as follows: pt_y=pt_operator (pt_input) for a single
input phase type operator and pt_y=pt_operator (pt_inputl,
pt_input2) for a dual input phase type operator. Column three
of Table 8 includes example pseudocode for implementing
the phase type operators. Each of the phase type operators
calls a function identified as first_matching_pt function,
which relies upon the ordering of phase types in Table 6. The
phase type operators listed in Table 8 each are comprised of a
call to a corresponding CWSS operator and a phase type
group operator. For instance, the pt_xor operator calls the
first_matching_pt function. The arguments to the first-
_matching_pt function include the CWSS operator cwss_xor
and the phase type group operator ptg_xor. The arguments to
the cwss_xor operator include the pt_to_cwss function,
called for each phase type input. The pt_to_cwss function
converts a phase type to a CWSS. The arguments to the
ptg_xor operator include the pt_to_ptg function, called for
each phase type input. The pt_to_ptg function converts a
phasetype to aphase type group. These conversions are based
on the relationships identified in Table 6, which can be
encoded in accordance with various data structures. Each
phasetype is associated with a CWSS and a phase type group.
Each CWSS is comprised of NTFs. Each NTF is based upon
a WSF, which, in turn, represents a multiple waveforms.
Table 9 identifies phase type group operators.

TABLE 9

Phase Type Group Operators

Prototype
Function (Call
Name Syntax) Definition (Lookup Table)
ptg_not ptg y = ptg_a: GO Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
ptg_not ptg_y: G1 GO GA GXCGXC GXC GXCGXCGXCGXCGXCGLEGLLGLTGN Gs GU
(ptg_a)
ptg_and ptg y = input input ptg_ b
ptg_and ptg_a GO Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
(ptg_a, GO GO GO GO GO GO GO GO GO GO GO GO GO GO GO GO GO GO
ptg_b) G1 GO0 Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
GA GO GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GU
GCE GO0 GCEGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCEGXCGU
GCI GO GCIGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCIGXCGU
GCL GO GCLGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCLGXCGU
GCT GO GCTGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCTGXCGU
GGE GO GGEGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGGE GXC GU
GGI GO GGIGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGGI GXCGU
GGL GO GGLGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGGL GXC GU
GGT GO GGTGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGGT GXCGU
GLE GO GLEGA GXCGXCGXC GXCGXCGXCGXC GXC GLE GLE GLE GLE GLE GU
GLL GO GLLGA GXCGXCGXC GXCGXCGXCGXC GXC GLE GLL GLE GLL GLL GU
GLT GO GLTGA GXCGXCGXC GXCGXCGXCGXC GXCGLEGLE GLT GLT GLT GU
GN GO GN GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GN GU
GS GO GS GA GXCGXCGXCGXCGXCGXCGXCGEGXCGLEGLLGLTGN GS GU
GU GO GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU
ptg_xor ptg y = input input ptg b
ptg_xor ptg_a GO Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
(ptg_a, GO GO0 Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
ptg_b) G1 Gl GO GA GXCGXCGXCGXCGXCGXCGXCGEGXCGLEGLLGLTGN GS GU
GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GU
GCE GCE GXCGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCEGXC GU
GCI GCI GXCGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCIGXCGU
GCL GCL GXCGA GXCGXCGXCGXCGXCGXCGXC GXCGXCGXCGXCGCL GXC GU
GCT GCT GXCGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGCT GXC GU
GGE GGE GXCGA GXCGXC GXC GXCGXCGXCGXC GXC GXCGXCGXCGGE GXC GU
GGI GGI GXCGA GXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGXCGGI GXC QU



US 9,251,304 B2

31 32
TABLE 9-continued
Phage Type Group Operatorg
Prototype
Function (Call
Name Syntax) Definition (Lookup Table)
GGL GGL GXCGA GXCGXCGXCGXCGXCGXCGXC GXCGXCGXCGXCGGL GXCGU
GGT GGT GXCGA GXCGXCGXCGXCGXCGXCGXC GXCGXCGXCGXCGGT GXCGU
GLE GLEGLE GA GXC GXC GXC GXC GXC GXC GXC GXCGLE GLE GLE GLE GLE GU
GLL GLL GLL GA GXC GXC GXC GXC GXC GXC GXC GXCGLE GLL GLE GLL GLL GU
GLT GLT GLT GA GXC GXC GXC GXC GXCGXCGXC GXCGLE GLEGLT GLT GLT GU
GN GN GN GA GCEGCI GCLGCT GGE GGI GGL GGTGLEGLLGLTGN GN GU
GS GS GS GA GXCGXCGXCGXCGXCGXCGXCGXCGLEGLLGLTGN GS GU
GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU
ptg_ ptg g = input input ptg d
latch pty_ ptg_¢ GO Gl GA GCEGCE GCLGCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
latch GO GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS Gs GS
(ptg_c, G1 GO Gl GA GXCGXCGXCGXCGXCGXCGXCGXCGLEGLLGLTGN GS GU
ptg_d) GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GU
GCE GO0 Gl GLEGLEGLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GS GLE
GCI GO Gl GA GA GA GA GA GA GA GA GA GA GA GA GA GS GU
GGL GO0 Gl GXLGXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GS GXL
GCT GO Gl GXTGXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GS GXT
GGE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE GLE
GGI GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA GA
GGL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL GXL
GGT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT GXT
GLE GA GA GA GA GA GA GA GA GA GA GA GA GA GA GN GA GU
GLL GA GA GA GA GA GA GA GA GA GA GA GA GA GA GN GA GU
GLT GA GA GA GA GA GA GA GA GA GA GA GA GA GA GN GA GU
GN GN GN GN GN GN GN GN GN GN GN GN GN GN GN GN GN GN
GS GS GS GA GA GA GA GA GA GA GA GA GLEGLLGLTGN GS GU
GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU GU
ptg_ ptg_ vy = ptg_a: GO Gl GA GCEGCI GCL GCT GGE GGI GGL GGT GLEGLLGLTGN GS GU
unit_ ptg_unit_ ptg_ y: GO Gl GA GXCGXC GXCGXCGXCGXCGXCGXCGLEGLLGLTGN GS GU
delay delay
(ptg_a)
Table 9 identifies five phase type group operators by example TABLE 10

function names in column 1: ptg_not, ptg and, ptg xor,
ptg_latch, and ptg_unit_delay. These phase type group opera-
tors correspond to the inverter, AND gate, XOR gate, trans-
parent latch, and unit delay circuit components. Column two
of Table 9 indicates an example syntax that may be used for
the phase type group operators. The phase type group opera-
tor syntax depicted in column two of Table 9 generally fol-
lows the other syntaxes described herein. For a single input
phase type group operator, the syntax is ptg_y=ptg_operator
(ptg_input). For a dual input phase type group operator, the
syntax is ptg_y=ptg_operator (ptg_inputl, ptg_input2). Col-
umn three of Table 9 is a table that specifies the resulting
phase type group output given a set of phase type group
inputs. These tables are similar to those specified in Table 3
for the NTF operators.

The phase type group operators identified in Table 9 indi-
cate possible output referred to herein as meta-phase type
groups (meta-PTGs). A meta-phase type group is a grouping
of'phase type groups. The phase type group operators in Table
9 provide for the possibility of three (3) meta-PTGs. These are
denoted herein as GXC, GXL, and GXT. Table 10 identifies
the phase type group members of each meta-PTG. Meta phase
type groups are implemented to specify results of phase type
group operations that conform to the rules specified herein.
Phase type groups allow for the compact representations of
multiple waveforms because the group identifiers can be used
to disambiguate a sequence of non-deterministic signal tran-
sition representations that map to different phase types.

45

55

60

65

Meta-Phase Type Groups,

META PHASE TYPE GROUPS  PHASE TYPE GROUPS
GXC G0, G1, GA, GCE, GCI, GCL,
GCT, GGE, GGI, GGL, GGT
GXL GA,GLL
GXT GA, GLT

FIG. 5 is a conceptual diagram that depicts an example
hierarchy of relationships among data constructs. Depending
on the programming language and particular literature, a data
construct can be referred to as a class, an object, a structure,
etc. This example data construct 500 includes several ele-
ments or members that define the structure of the class and
behavior of the class. The structure of this data construct 500
is defined by the following members: NTFs 508, CWSSs 516,
phase type groups 520, meta phase type groups 524, phase
tags 532, phase types 536, mode expressions 540, mode inde-
pendent phase expressions (MIPEs) 544, phase expressions
548, reduced orthogonal list of conditional MIPE pairs
(ROLCMPs) 552, and phase ids 556. The behavior of the data
construct 500 is defined by functions or operators that operate
on the depicted members: NTF operators 560, CWSS opera-
tors 564, phase type group operators 568, phase tag operators
572, phase type operators 576, mode operators 580, MIPE
operators 584, phase expression operators 588, and phase id
operators 592. Subsequent figures provide additional detail
regarding each illustrated member and operator.

FIG. 5 depicts a waveform set function (WSF) 504 as
supporting the NTF data construct 508. The WSF 504 is



US 9,251,304 B2

33

depicted with a dashed line because the WSF 504 may not be
explicitly defined in a data construct. An NTF data construct
can be defined in a class, for example, based on assumptions
that rely upon a WSF without explicitly indicating the map-
pings from each unit of time to an NTF. But the NTF data
construct 508 would express the definitions indicated in Table
2.

A CWSS 516 is a sequence of NTFs 508. Together with a
virtual clock 512, a CWSS 516 defines sets of waveforms
528. The virtual clock 512 is also depicted with a dashed line
because this may not be explicitly defined in a data construct.
The information for a virtual clock (e.g., timing parameters)
can be assumed or implied by the CWSS data construct 516.
The NTF operators 560 manipulate each NTF 508 that com-
prises an instance of a CWSS 516, thereby manipulating the
CWSS 516 instance.

A user applies phase tags 532 or phase expressions 548 to
the primary inputs and the outputs of clock generators in a
circuit design. Operations are performed on these phase tags
532 or phase expressions 548. When the operations are per-
formed, the phase tags 532 or phase expressions 548 are
propagated throughout a design, and the resulting phase tags
532 or phase expressions 548 can be analyzed to identify
possible design defects or particular design characteristics. A
phase tag 532 or phase expression 548 is propagated through-
out the circuit design by transforming input phase tags or
input phase expressions received at primary inputs and out-
puts of clock generators in a circuit design through the pre-
viously discussed look up tables so that each output net of the
circuit design includes a phase tag 532 or phase expression
548.

A phase type 536 is a generalized version of a phase tag
532. While a phase tag 532 can be associated with a particular
virtual clock 512, aphasetype 536 is a generalized expression
representing a set of waveforms 528. As with the other vari-
able types, a phase type 536 can be manipulated through
phase type operators 576. A phase type 536 is associated with
a clocked waveform set specification (CWSS) 516 and a
phase type group 520.

As previously mentioned, multiple phase types 536 can be
associated with the same CWSS 516. A phase type group 520
distinguishes such phase types 536, and can distinguish char-
acteristics of signals represented by phase types 536, such as
clock signals as compared to data signals. Certain phase type
groups 520 can be constituent elements of a meta phase type
group 524. Phase type groups 520 and meta phase type groups
524 can be manipulated through phase type group operators
568.

Phase tags 532 and phase expressions 548 themselves are
comprised of lower level data constructs (e.g., CWSSs) and
also can be converted into different data constructs on which
operations are executed. A phase expression 548 is comprised
of zero or more mode expressions 540 and one or more
MIPEs 544.

A mode expression 540 represents a condition in which a
design can operate among multiple modes. A mode is a selec-
tion between a first signal and a second signal that is different
from the first signal. For example, a design might include a
dual input multiplexer. A first input to the multiplexer might
be a first clock signal and a second input to the multiplexer
might be a second clock signal that is asynchronous to the first
clock signal. The multiplexer can receive a selector signal that
causes it to select between the first signal and the second
signal. In this example, the design includes more than one
mode, which can be represented via a mode expression 540.
Operations can be performed on the mode expressions 540
through the mode operators 580.

10

15

20

25

30

35

40

45

55

60

65

34

A MIPE 540 is comprised of one or more phase tags 532. A
MIPE 540 represents a set of waveforms 528 thatis a function
of the set of waveforms 528 represented by the constituent
phasetags 532 ofthe MIPE 544. Operations can be performed
on a MIPE 544 through the MIPE operators 584.

A phase expression 548 can be converted into a reduced
orthogonal list of conditional MIPE pairs 552, designated as
a ROLCMP 552. A ROLCMP 552 is a data construct that
enables phase expressions 556 to be converted into phase ids
556. A phase id 556 is a numerical handle associated with
phase expressions 548, enabling phase expressions 548 to be
more easily manipulated. Subsequent sections of this speci-
fication describe converting a phase expression 548 into a
ROLCMP 552, and converting a ROLCMP 552 into phase ids
556.

A phase tag 532 represents a set of waveforms 528 via
CWSS:s. Insome cases, a phase tag 532 can be associated with
a virtual clock 512. Syntactically, if a phase tag 532 is asso-
ciated with a virtual clock 512, the phase tag will follow a
syntax which includes the name of the virtual clock 512. One
such syntax can be represented as “Clock Name@ Type of
Clock Signal.” For example, the phase tag 532 “A@L” des-
ignates the waveform set 528 associated with a latch clocked
by the leading phase of virtual clock “A.” However, in other
cases, a phase tag 532 may not be associated with a virtual
clock 512. For instance, the phase tag “*”” designates the set of
all possible waveforms 528. Phase tags 532 can be manipu-
lated via phase tag operators 572. Phase tag operators 572
implement operations on phase tags 532. A phase tag 532 can
be employed to distinguish among a type of signal, such as
whether a signal is a clock signal, a data signal (e.g., latch
driven signal), or a constant; a type of clock, such as a level,
pulse, or delayed clock and inverted versions of each; and a
phase of data, such as leading, trailing, or a combination.

As mentioned earlier, a phase type 536 is a generalized
expression representing a set of waveforms 528. For example,
a phase tag 532 such as “A@L” can be generalized to the
phase type “C@L,” which represents a set of waveforms 528
associated with a leading-phase-clocked latch clocked by any
clock C. In some instances, a phase tag 532 conflates with the
concept of a phase type 536.

As discussed above, more than one phase type 536 can be
represented by identical CWSSs 516. Phase type groups 520
can distinguish phase types 536 that are represented by iden-
tical CWSSs 516. Phase type groups 520 can also be imple-
mented to distinguish among classes of signals, such as clock
signals, data signals, and combinations of clock and data
signals.

Phase expressions 548 can be comprised of mode expres-
sions 540 and MIPES 544. A mode expression 540 is a Bool-
ean function with amode as its argument. As discussed above,
a mode is a Boolean function of the value of a signal in a
design. For instance, if a design includes a dual input multi-
plexer, wherein a first input is a first clock signal and a second
input is a second clock signal and a selector signal to the
multiplexer causes the multiplexer to select the first or the
second clock signal, then a mode expression 540 can repre-
sent the conditionality of the multiplexer’s output—i.e.—that
it is either the first clock signal or the second clock signal
depending on the selector signal received at the multiplexer.
Syntactically, a mode expression 540 can be specified in
Backus-Naur form:

<mode__expression> ::= <mode__and__expression> |
<mode__expression> “|”

<mode__and_ expression>

<mode__and__expression> ::= <mode__prefix__expression> |



US 9,251,304 B2

35

-continued

<mode__and__expression™> “&” <mode_ prefix__expression>
<mode__prefix__expression> ::= <mode__primary__expression> | “~”
<mode_ prefix__expression>

<mode__primary__expression> ::= <mode> | “0” | “1” |
“(“mode__expression>")".

The mode operators 580 comprise the logical functions
NOT, AND, OR, and XOR that can take mode expressions
540 as inputs to generate an output mode expression 540 that
has been manipulated via operation of one of the logical
functions.

A MIPE 544 is a string that is comprised of a single phase
tag 532 or multiple phase tags 532. In particular, a multi-
phase tag 532 MIPE 544 is an expression in which two or
more phase tags 532 are joined by a transition-union operator,
denoted with the " symbol. A MIPE 544 represents a set of
waveforms 528 that is a function of the set of waveforms 528
represented by the constituent phase tags 532. Specifically, a
MIPE 544 represents the set of all waveforms 528 that have
transitions only at times coincident with the times of transi-
tions of waveforms in the sets of waveforms 528 represented
by the constituent phase tags 532. Syntactically, a MIPE 544
can be expressed in Backus-Naur form:

<mode__independent__phase__expression> ::= <phase__tag> |
<mode__independent_ phase_expression™> “ » <phase_ tag>.

For example, the MIPE “A@L"B@L” means the set of wave-
forms that can transition from the leading edge of either clock
A or clock B. The MIPE operators 584 allow operations to be
performed on MIPES 544.

Phase expressions 548 model the behavior of designs in
which at least one circuit component receives a first clock
signal and a second clock signal, wherein the first clock signal
is asynchronous to the second clock signal. Additionally,
phase expressions 548 model the behavior of designs in
which at least one circuit component is capable of selecting a
first signal or a second signal.

Syntactically, a phase expression 548 can be expressed in
Backus-Naur form as follows:

<phase__expression>:: = <mode__independent__phase expression>|
<conditional__phase_ expression>

<conditional__phase expression>:: = <mode__expression> “->"
<mode__independent_ phase_ expression> “:” <phase__expression>.

The relationship between a phase expression 548 and the
set of waveforms 528 that the phase expression 548 repre-
sents is best understood through an example. Consider the
example phase expression 548 pe3=m—=pel:pe2, where m is
amode expression 540, pel is a MIPE 544, and pe2 is a phase
expression 548. The set of waveforms that phase expression
pe3 specifies is the set of waveforms w3 such that, for some
wl waveform in pel and some w2 waveform in pe2,
w3(t)=wl(t) if m is true at time t; otherwise, w3(t)=w2(t).
Two phase expressions 548 are equal if the waveform set 528
that each phase expression 548 specifies is the same. In some
instances, a phase expression 548 might be optimally
expressed in reduced orthogonal form. For example, the
phase expression 548 pe=m_ 1—p_ 1:m2—=p_2:...:p_kis
in a reduced orthogonal form if four conditions are met: the
m_i mode expressions 540 are pairwise orthogonal, meaning
thatm_i & m_j=0 whenever idoes not equal j; none ofthem_i

25

30

45

50

55

36

mode expressions 540 are constant false Boolean functions,
meaning that there does not exist an m_i that equals 0; the
mode expression 540 defined by m k=-m 1 &
~m_2& ...& ~m_{k-1} is not the constant false Boolean
function, meaning that m_k does not equal 0; and the p_i
MIPEs 544 are different from each other.

The phase expression operators 588 implement math-
ematical operations (i.e. logical operations) on phase expres-
sions 548. For example, the phase expression operators 388
can be used to find the logical AND of a first phase expression
548 and a second phase expression 348. In general, phase
expression operators 588 perform operations on phase
expressions 548.

Two data types can be deployed to increase computational
efficiency in performing calculations with phase expressions
548. One such data type is the phase id 556. A second such
data type is the reduced orthogonal list of condition-MIPE
pairs (ROLCMP) 552. A phase id 556 is a unique non-nega-
tive integer handle associated with a phase expression 548.
Phase expressions 548 that are equivalent to one another can
be assigned to the same phase id 556. In one embodiment,
phase expressions 548 are sequentially assigned to phase ids
556 as the phase expressions 548 are encountered. The
ROLCMP 552 datatype can be implemented to convert phase
expressions 548 to phase ids 556 and vice versa. For example,
a rolemp_to_id data structure can map the canonical
ROLCMP form of each phase expression 548 to the phase id
556 assigned to it, and a sequential container id_to_rolcmp
can store the canonical ROLCMP 552 data structure for each
previously encountered phase expression 348, indexed by
phase id 556. Operations can be performed on phase ids 556
through phase id operators 592.

The following flowcharts and pseudocode provide
example operation of a phase algebra based design tool that
operates with compact multi-waveform representations.
These example operations will refer back to the operators and
data constructs introduced in the earlier tables.

FIG. 6 is a flowchart of example operations for initializing
an RTL circuit design representation of phase algebra based
evaluation and propagation of compact multi-waveform rep-
resentations throughout the design representation. At block
604, a representation of multiple waveforms is received at
each primary input and at the output of each clock generator
of'an RTL circuit design representation. For instance, a phase
tag or phase expression is associated with a primary input of
an RTL circuit design representation. At block 608, the RTL
circuit design representation is initialized to prepare the RTL
circuit design representation to accept propagated multi-
waveform representations. The initialization marks nets for
propagation operations. At block 612, the multi-waveform
representations are determined for each of the nets in the RTL
circuit design resulting from the received multi-waveform
representation. For example, operators are applied to deter-
mine output phase tags based on the various circuit compo-
nents modeled in the RTL circuit design representation. At
block 616, the determined multi-waveform representations
are supplied for evaluation of the RTL circuit design.

FIG. 7 illustrates terminology associated with the example
propagation algorithm and pseudocode to be described. A
flip-flop 708 and path delay block (PDB) 716 are referred to
as boxes. The connectors 704, 712 represent nets. The boxes
708, 716 can also be referred to as nodes. The connector 704
is the input net to flip flop 708, and the connector 712 (“netA”)
is both the output net from the flip flop 708 and the input net
to the PDB 708. The propagation algorithm determines an
output phase id, which will appear at netA 712. PDB 716 can
bereferred to as the sink box of netA 712. In one embodiment,



US 9,251,304 B2

37

a source set and an update set can be established. The source
set and update set can be data structures that store information
about the status of each box in a circuit design representation.
For example, the source set might include boxes associated
with input multi-waveform representations but that lack out-
put multi-waveform representations. The update set can
include boxes that are associated with both input multi-wave-
form representations and output multi-waveform representa-
tions.

FIG. 8 is a flowchart of example operations for initializing
a circuit design representation for phase algebra based evalu-
ation. Atblock 804, a loop of operations begins for each net in
an RTL circuit design representation. The operations in the
loop are represented by blocks 808, 812, 816, 820, and 824.
Block 828 is check for a termination condition for the loop. At
block 808, it is determined whether a multi-waveform repre-
sentation is already assigned to the net. If a multi-waveform
representation is not already assigned to the net, the flow
proceeds to block 812. Otherwise, the flow proceeds to block
824. Atblock 812, it is determined whether the net represents
acircuit input or a clock generator output. I[f the net represents
a circuit input or clock generator output, then the flow pro-
ceeds to block 816. Otherwise, the flow proceeds to block
820. Atblock 816, a null indication is assigned to the net, and
the flow proceeds to block 824. At block 824, each sink node
associated with the net is added to a set of sink nodes to be
processed. At block 820, an unknown indication is assigned to
the net. The flow proceeds to block 828. At block 828, it is
determined whether there exist any additional nets in the
circuit design representation. If additional nets exist in the
circuit design representation, then the flow returns to block
804. Otherwise, the flow proceeds to block 832. Atblock 832,
an indication that initialization is complete is generated.

The example initialization and propagation operations dis-
cussed below refer to three example data objects: 1)
source_set, 2) update_set, and 3) phase_expr_conflicts. The
source_set can indicate nodes of a netlist that have not yet
been processed through a current iteration of a propagation
algorithm. The update_set can indicate nodes of a netlist that
are to be processed by the next iteration of the propagation
algorithm. As nodes from the source_set are processed
through the propagation algorithm, these nodes are removed
from the source_set while other nodes may be moved into the
update_set. The phase_expr_conflicts indicates information
associated with an error, for example, caused by inconsis-
tently specified phase attributes.

Below is example pseudocode for initializing an RTL cir-
cuit design for phase algebra based evaluation. The term sink
box refers to a node of anetlist that has an input pin connected
to a given net. The initialization algorithm executes until the
initialization algorithm has iterated through all nets in a
netlist. If a net has received a phase expression, then the
initialization algorithm converts the phase expression to a
phase 1D, assigns the phase ID to the net, and assigns each
sink box associated with the net to the source_set. Otherwise,
if anet is a primary input to a netlist or a net is associated with
the output of a clock generator, then the phase 1D correspond-
ing to the null phase tag <> is associated with the net, and the
sink boxes attached to the net are stored in the source_set.
Since each primary input of a netlist or each output of a clock
generator is expected to have been assigned a phase expres-
sion, this aspect of the algorithm accounts for the possibility
of user omission. Finally, if no phase expression has been
assigned to a net, then the unknown phase tag “-" is assigned
to the net.

10

15

20

25

30

35

40

45

50

55

60

65

38
1 for each net in circuit model {
2 if ( net has been assigned a phase expression by the designer ) {
3 Convert phase expression to a phase ID.
4 Assign phase ID to the net.
5 Add each sink box of the net to source__set.
6
7 else if ( net is a circuit input
8 or net is attached to the output of a clock generator)
9
10 Assign phase ID for “<>”to the net.
11 Add each sink box of the net to source__set.
12
13 else {
14 Assign phase ID for “-” to the net.
15
16 }

As discussed earlier, higher level data constructs (e.g.,
phase tag) are decomposed into lower level data constructs
(e.g., NTFs) in order to apply operations of circuit compo-
nents modeled in the circuit design representation. These
operations often yield a sequence of NTFs or a CWSS that is
converted back into a phase type in order for propagation to
continue or determine an output to associate with a net for
later defect analysis. FIG. 9 is a flowchart of example opera-
tions for determining an output multi-waveform representa-
tion based on an input sequence of non-deterministic transi-
tion representations. At block 904, an input sequence of non-
deterministic transition representations and a phase type
group identifier for the input sequence is received. At block
908, the first entry in an ordered phase type structure is
selected that associates phase types with phase type groups.
Atblock 912, it is determined whether the phase type group of
the entry matches the received phase type group identifier. If
the foregoing is false, then the flow proceeds to block 920.
Otherwise, the flow proceeds to block 916. At block 920, the
next entry in the ordered phase type structure is selected, and
the flow returns to block 912. At block 916, a sequence of
non-deterministic transition representations associated with
the phase type of the entry is determined. The flow proceeds
to block 924 from block 916. At block 924, it is determined
whether the input sequence is a subset of the phase type
sequence. If the foregoing is false, then the flow returns to
block 920. Otherwise, the flow proceeds to block 928. At
block 928, the phase type indicated in the entry is returned.
Embodiments may utilize additional logical constructs for
analysis based on various groupings. For instance, an addi-
tional logical construct can be employed to group together
certain phase type groups. The pseudocode below employs
such a construct and refers to it as a meta phase type group.

Below is example pseudocode that determines an output
phase type based on a received input CWSS and a received
input phase tag group or meta phase tag group. The phase type
output pseudocode implements a function referred to as the
first_matching_pt function. The first_matching_pt function
iterates through a table of phase types in phase type order
number. As the first_matching_pt function iterates through
the phase type list, the first_matching pt function calls a
function referred to as the pt_to_ptg function. The pt_to_ptg
function takes a phase type as an input and returns the phase
type group associated with that phase type as an output. For
each phase type, the first_matching pt function checks
whether the phase type group returned by the pt_to_ptg func-
tion equals the input phase type group or is a member of the
input meta phase type group. Additionally, the first_match-
ing_pt function checks whether the input CWSS is a subset of
the CWSS associated with the phase type in the phase type
table, calling a function referred to as pt_to_cwss (pt). The



US 9,251,304 B2

39

pt_to_cwss function takes a phase type as an input and returns
the CWSS associated with that phase type as an output. If
both of the foregoing conditions are met, then the phase type
is returned as an output. The phase type operators call the
first_matching_pt function.

1 for each, phase type pt in the phase type table, in order by

number {
2 if (( pt__to_ptg (pt) == mptg or is in the meta-PTG named by
mptg)
and (cwss__is__subset (cwss, pt__to__cwss(pt))))
4
5 Return pt.
6 ¥
7
8 (should never get here)

FIG. 10 is a flowchart of example operations for propagat-
ing multi-waveform representations after initialization of an
RTL circuit design representation. At block 1004, the circuit
design representation is initialized as discussed above. In
some cases, the initialization algorithm converts all phase
expressions to phase ids via the phase_expr_to_id function.
Atblock 1008, the source set is checked to determine whether
it is empty. If the source set is empty, then the propagation
process is complete and the flow proceeds to block 1036. At
block 1036, checking is applied to the resulting multi-wave-
form representation propagated throughout the design. The
checking algorithms use the generated phase ids to identify
particular characteristics associated with a design, some of
which can be potential defects. Ifthe source set was notempty
at block 1008, the flow proceeds to block 1012.

At block 1012, an input multi-waveform representation is
propagated through the next box in the source set and the
processed box is removed from the source set. For example,
an input phase id is used to search for a result phase id in a
lookup table. If a result phase id is found in the lookup table,
then the result phase id is returned, and the process proceeds
to block 1016. The particular look up tables accessed will
vary dependent upon the phase id and the operation (e.g.,
AND, OR, etc.) represented by the box. More details are
provided by FIGS. 11 and 12. FIG. 11 presents example
operations for particular logic while FIG. 12 presents
example operations for enforcing adjacency restrictions.
However, if a result phase id is not found in the lookup table,
then the input phase id is converted to a ROLCMP in accor-
dance with the phase id look-up algorithm. Operations then
can be performed on the ROLCMPs. Phase expressions can
be derived from the ROLCMP operations. The phase expres-
sions can be converted into phase ids. The process proceeds to
block 1016.

At block 1016, the multi-waveform representation result-
ing from block 1012 is compared to the multi-waveform
representation currently associated with the output net of the
processed box. If the resulting multi-waveform representa-
tion is different from the current multi-waveform representa-
tion, the flow proceeds to block 1020. Otherwise, the process
proceeds to block 1028.

At block 1020, the multi-waveform representation result-
ing from block 1012 is assigned to the output net associated
with the processed box. At block 1024, the sink boxes of the
net are placed in the update set.

At bock 1028, the source set is checked to determine
whether it is empty. If the source set is not empty, then the
flow again proceeds to block 1012 at which a multi-waveform
representation is propagated through the next box in the
source set, and the flow proceeds. Otherwise, the flow pro-

10

15

30

40

45

40
ceeds to block 1032. At block 1032, the source set is over-
written with the contents of the update set. The flow proceeds
to block 1008.

Below is example pseudocode for a propagation algorithm.
The pseudocode iterates until the source_set is empty. Within
one iteration, the propagation algorithm clears the
update_set. The term “box” referenced in the propagation
algorithm means a node in the netlist, which is connected to
input and output nets. For each box in the source set class and
for each net connected to the output of that box, the propaga-
tion pseudocode evaluates the phase id operator correspond-
ing to the circuit component represented by the box, gener-
ating a determined phase id, referred to in the propagation
pseudocode as the new_phase id. The propagation
pseudocode determines whether the determined phase id
assigned to the output net of each box is different from the
phase id previously assigned to the net. If the determined
phase id is different from the phase id previously assigned to
the net, then the pseudocode checks to determine whether the
net was given an initial value other than one corresponding to
anull phase type “<>" or unknown phase type “-~.” If the net
had been given an initial value other than ones associated with
the phase types < > or -, then the propagation pseudocode
stores the calculated value in the phase_expr_conflict set.
Otherwise, the propagation pseudocode assigns the deter-
mined phase id to the output net and stores each sink box
associated with the output net to the update_set. At the end of
the iteration, the propagation pseudocode overwrites the
source_set with the boxes stored in the update_set. Conse-
quently, the source_set then includes boxes, the input nets of
which were updated with newly calculated phase ids.

1 while ( source__set is not empty ) {

2 Clear update__set.

3 for each box in source__set {

4 for each net connected to box output {

5 Let new_ phase__id = evaluated phase tag on box
output.
if (new_phase_id is different from phase ID
currently assigned to net )

[N

7
8 if ( net has been assigned a phase expression by
the designer ) {
9 Assign new__phase__id value to net in
10 phase__expr_ conflict map, but leave phase
ID on net unchanged.
11
12 else {
13 Assign new__phase__id to net.
14 Add sink boxes of net to update__set.
13 }
16 }
17 }
18 }
19 Set source__set = update__set.
20 }

FIGS. 11 and 12 are flowcharts of example operations for
applying circuit component based operations to sequences of
signal transition representations. For instance, a tool applies
an operation for an AND component, an operation for an
XOR component, etc. Examples of the component based
operators include the CWSS operators cwss_and, cwss_xor,
cwss_trans_latch, and cwss_trans_latch_const. As the tool
analyses each circuit component representation of the circuit
design representation, the tool invokes program code corre-
sponding to the circuit component representation. When the
program code is invoked, the operations begin at block 1108.

At block 1108, an operation that corresponds to the circuit
component representation is applied to a first signal transition



US 9,251,304 B2

41

representation of each sequence of signal transition represen-
tations of each input net of the circuit component representa-
tion. The result of applying the operation that corresponds to
the component is assigned to a first slot of an output sequence.
For example, if a circuit component is an AND gate, the NTF
operator ntf_and can be invoked. The ntf and operator
receives a first NTF and a second NTF associated with the first
slot of each CWSS that is an input to input nets of the AND
gate. The result of applying the foregoing can be assigned to
the first slot of an output sequence. For instance, the result of
applying the ntf_and operator to the first NTF associated with
each input CWSS can be applied to the first slot of the output
CWSS sequence. The flow proceeds to block 1112.

Atblock 1112, a process that iterates through each subse-
quent signal transition representation of each sequence of
each input net begins.

At block 1116, the operation is applied to the signal tran-
sition representations to yield a result. For instance and con-
tinuing with the AND gate example, the process iterates
through the second through eighth slot of each input CWSS
applied to the AND gate, invoking the ntf_and operator. The
flow proceeds to block 1120.

At block 1120, the results of the block 1116 are validated
against adjacency restrictions. For example, each output NTF
can be validated to confirm that such output NTF conforms to
the NTF adjacency restrictions. If it does not conform, then
the NTF is adjusted.

At block 1124, the validated result is assigned to the next
slot of the output sequence. For example, a validated output
NTF can be assigned to the appropriate output CWSS slot.

At block 1128, it is determined whether there exist addi-
tional subsequent signal transition representations to process.
If any additional subsequent signal transition representations
remain, then the process returns to block 1112.

Otherwise, the flow proceeds to block 1201 in FIG. 12. At
block 1201, the first element and last element of the output
sequence are validated against adjacency restrictions. The
flow proceeds to block 1203.

Atblock 1203, the results of the validation are assigned to
a validation variable and an index X is set equal to 0. The
index X is used to progress through each element of the output
sequence.

At block 1205, it is determined whether the validation
variable equals the element of the output sequence that cor-
responds to the location of the index X. If the validation
variable equals the element of the output sequence that cor-
responds to the location of the index X, then the flow proceeds
to block 1219, where the output sequence is indicated. Oth-
erwise, the flow proceeds to block 1207.

At block 1207, the validation variable is assigned to the
element of the output sequence that corresponds to the loca-
tion of the index X. The flow proceeds to block 1209.

At block 1209, the index X is incremented. The flow pro-
ceeds to block 1211.

At block 1211, it is determined whether the index X has
reached the end of the output sequence by testing whether X
equals the number of slots. If the foregoing is true, then the
flow proceeds to block 1219 at which the output sequence is
indicated. Otherwise, the flow proceeds to block 1213.

At block 1213, the validation variable and the slot of the
output sequence that corresponds to the location of the index
X are validated against the adjacency restrictions. The flow
proceeds to block 1215.

At block 1215, the validation result is assigned to the
validation variable. The flow returns to block 1205 from block
1215.

10

15

20

25

30

35

40

45

50

55

60

65

42

Each CWSS example pseudocode other than the
pseudocode corresponding to cwss_is_subset generates an
output CWSS, and the pseudocode corresponding to cwss_
is_subset generates a Boolean result, by manipulating each
NTF of an input CWSS, exploiting the characteristic that a
CWSS is comprised of NTFs. Thus, the CWSS pseudocode
invokes the NTF operators, transforming each NTF that com-
prises a CWSS to generate an output CWSS. The notation
“=="means “is equal to,” and the notation “!=" means “is not
equal to” in the example pseudocode provided throughout.
The CWSS pseudocode referred to as cwss_basic_operator,
shown below, is a generic algorithm that implements the
CWSS operators cwss_and, cwss_xor, cwss_trans_latch, and
cwss_trans_latch_const. The CWSS pseudocode cwss_basi-
c_operator applies the NTF operation that corresponds to the
desired CWSS operation, designated as ntf_op_function in
the pseudocode, on two input CWSS slots, designated cwss_a
[0] and cwss_b[0]. The CWSS slots cwss_a[0] and cwss_b[0]
correspond to NTFs. The cwss_basic_operator pseudocode
iterates through each slot in the range 1 through 7, applying
the ntf_fix_adjacent operator to the immediately preceding
CWSS slot, designated cwss_y[i-1], and to the result of
applying an NTF operator that corresponds to the desired
CWSS operator to slots of each CWSS, designated cwss_ali]
and cwss_b[i]. The ntf_fix_adjacent operator ensures that the
adjacency restrictions applicable to NTFs are satisfied. The
cwss_basic_operator pseudocode determines the result of
applying the ntf_fix_adjacent operator to the first and last
CWSS slots of the calculated CWSS, storing the result of the
determination in a variable designated fixed_ntf. The
cwss_basic_operator pseudocode resets the iterator by setting
it equal to 0. The cwss_basic_operator pseudocode sets each
slotin the calculated CWSS equal to the variable fixed_ntf for
as long as any slot in the calculated CWSS does not equal the
value of the variable fixed_ntf, incrementing the iterator each
time. Ifthe iterator equals 8 (meaning that the calculation has
been performed for each slot in the CWSS), then the
cwss_basic_operator pseudocode ends. Otherwise, the
cwss_basic_operator pseudocode calculates the result
ofntf_fix_adjacent for each slot in the calculated NTF and for
the variable fixed_ntf, storing the result of the calculation in
the variable fixed_ntf.

Generic algorithm for cwss__and cwss__xor,
cwss__trans_ latch, and cwss__trans_ latch_const (replace
ntf op_ function with ntf_and, ntf xor, ntf trans latch,

or ntf_trans_ latch_const, respectively). The notation
cwss_x[slot__number] refers to the NTF stored in
the given slot number of the referenced CWSS.

—

Set cwss__y[0] = ntf_op__function(cwss_ a[0], cwss__b[0]).
for each slot i in the range 1 to 7 {
Set cwss_y[i] = ntf__fix_ adjacent( cwss_y[i-1],
ntf__op_ function(cwss_a[i], cwss_b[i]) ).

W N

Let fixed_ntf =ntf fix_ adjacent( cwss__y[7], cwss_y[0] ).
Seti=0.
while ( fixed_ ntf !=cwss_y[i] ) {
Set cwss__y[i] = fixed__ntf.
Increment i by one.
if(i==8){
Exit while-loop. (cwss__y[0] should equal
ntf fix_adjacent( cwss_y[7], cwss_y[0] ).)

= O Wwoo oy b

— =

Set fixed__ntf = ntf_ fix_ adjacent( fixed__ntf, cwss__y[i] ).

FIG. 13 is a flowchart of example operations for imple-
menting the cwss_{ix_latch operator. At block 1304, a previ-



US 9,251,304 B2

43

ous variable is set to the last slot of the first input sequence of
the signal transition representations.

Atblock 1308, a control block iterates through each slot of
the sequence.

At block 1312, it is determined whether the current slot is
neither the middle slot nor the last slot. If the current slot is
neither the middle slot nor the last slot, the flow proceeds to
block 1316. Otherwise, the flow proceeds to block 1324.

Atblock 1316, it is determined whether the current slot of
the first sequence indicates a representation of a completely
non-deterministic signal. Ifthe foregoing is true, then the flow
proceeds to block 1320. Otherwise, the flow proceeds to
block 1324.

Atblock 1320, it is determined whether the next slot of the
first input sequence indicates a representation of a stable
signal. If the foregoing is true, then the flow proceeds to block
1328. Otherwise, the flow proceeds to block 1324.

At block 1328, it is determined whether the previous vari-
able indicates a representation of a glitch free signal. If the
foregoing is true, then the flow proceeds to block 1324. Oth-
erwise, the flow proceeds to block 1332.

Atblock 1324, the current slot of the output sequence is set
to indicate the current slot of the first input sequence.

If it was determined that the previous variable does not
indicate a glitch free signal, then the current slot of the output
sequence is set to indicate a representation of a glitch free
signal at block 1332. From either block 1324 or block 1332,
the flow proceeds to block 1325.

At block 1325, the previous variable is set to indicate the
current slot of the first input sequence and the current slot is
updated to the next slot. Control flows from block 1325 to
block 1336.

At block 1336, it is determined whether additional slots
exist. [f additional slots do not exist, then the flow proceeds to
block 1340, and the output sequence is indicated. Otherwise,
the flow returns to block 1308.

The pseudocode referred to as cwss_fix_latch is an
example for the CWSS operator cwss_fix_latch. The
cwss_{fix_latch pseudocode stores the last NTF in the CWSS,
designated cwss_a[7], in a variable designated ntf_prev. The
pseudocode iterates through each slot in the CWSS. The
pseudocode checks whether five conditions are met: 1) the
iterator is not equal to three, 2) the iterator is not equalto 7, 3)
the NTF at the CWSS slot equals the NTF FX, the NTF at the
subsequent CWSS slot equals the NTF FS, and the value of
the variable ntf_prev does not equal the NTF FG. If the
foregoing conditions are met, then the CWSS slot is set equal
to the NTF FG. Otherwise, the CWSS slot simply equals the
value of the original CWSS slot. The variable ntf_prev is then
set equal to the CWSS slot.

10

15

20

25

30

35

40

45

50

44

delay variable is set to indicate a stable signal representation.
The flow proceeds to block 1408.

At block 1408, control block begins to iterate through each
slot in a sequence of signal transition representations.

At block 1410, it is determined whether a multi-waveform
expression indicates a leading phase clock. If the foregoing is
false, then the flow proceeds to block 1412. Otherwise, con-
trol flows to block 1416.

At block 1412, a variable J is set to a result of (I+((total
number of slots)/2)) modulo the total number of slots. I is the
iterator variable, which references a slot of the sequence.

Ifit was determined at block 1410 that the multi-waveform
expression does not indicate a leading phase clock, then the
variable J is set to equal the iterator I at block 1416.

At block 1420, it is determined whether I equals zero. If I
equals zero, then the flow proceeds to block 1428. At block
1428, the Jth slot of the output sequence is set equal to the Jth
slot of the first input sequence. If, at block 1420, it is deter-
mined that I does not equal zero, then the flow proceeds to
block 1424.

At block 1424, it is determined whether the Jth slot of the
input sequence specifies a subset of the waveform transitions
specified by the delay variable. If the foregoing is true, then
the flow proceeds to block 1436. Otherwise, control flows to
block 1432.

At block 1432, the delay variable is set to indicate the
representation indicated at the Jth slot of the first input
sequence. The flow proceeds to block 1436.

At block 1436, the Jth slot of the output sequence is set
equal to the delay variable.

At block 1440, it is determined if there are additional slots.
If there are additional slots, then the flow returns to block
1408. Otherwise, the flow proceeds to block 1444 to indicate
an output sequence.

The CWSS pseudocode referred to as cwss_path_delay is
an example of the CWSS operator cwss_path_delay, The
pseudocode sets a variable designated delay_ntf equal to the
NTF FS. The pseudocode iterates through each slot in the
CWSS. If the type argument indicates a leading edge clock,
then the iterator, designated i, is stored in a variable desig-
nated j. Otherwise, the iterator i is bitwise XORed with the
number 4 and stored in the variable j. If the iterator i equals 0,
then the ith slot of the result CWSS is replaced with the jth slot
of'the original CWSS. Otherwise, the pseudocode determines
whether the NTF associated with CWSS slot a[j] is a subset of
the variable delay_ntf, applying the ntf_is_subset operator. If
the CWSS slot is not a subset, then the slot is stored in the
variable delay_ntf. The CWSS slot then is overwritten by the
value in the variable delay_ntf.

Algorithm for cwss__path_ delay:

Algorithm for ewss__fix_latch:

Let ntf prev =cwss_a[7].
for each slot i in the range 0 to 7 {
if (i!=3andi!=7and cwss_a[i] == FX and
cwss_a[i+1] == FS and ntf_prev !=FG ) {
Set cwss__y[i] = FG.

W N

else {
Set cwss__y[i] = cwss__a[i].

Set ntf__prev = cwss__ali].

[sRRNo RN IR e NV N

—

FIG. 14 is a flowchart of example operations for implemen-
tation of the cwss_path_delay operator. At block 1404, a

55

60

65

1 Letdelay_ntf=FS.
2 foreach sloti in the range 0 to 7 {
3 if ( type is leading ) {
4 Set variable j = i.
s
6 else {
7 Set j = i bitwise-exclusive-OR’d with 4.
s )
9 if(i==0){
10 Set cwss_y[j] = cwss_a[j].
11
12 else {
13 if (ntf_is_subset ( cwss_al[j], delay_ ntf) returns false ) {
14 Set delay_ ntf = cwss_a[j].
15 }
16 Set cwss__y[j] = delay_ ntf.



US 9,251,304 B2

45

-continued

Algorithm for cwss__path_ delay:

17 }
18 1}

FIGS. 15A-15B depict a flowchart of example operations
for implementation of the cwss_is_subset operator. At block
1501, it is determined whether the last slots in both input
sequences of signal transition representations indicate a
glitch free signal. If the forgoing is false, then the flow pro-
ceeds to block 1505. Otherwise, control flows to block 1503.

Atblock 1505, the glitch free range variable is set to a value
designated OUT, which indicates that the iterator is outside a
range of slots in which the first input sequence of signal
transition representations and the second sequence of signal
transition representations both indicate a glitch free range
variable in corresponding slots.

Atblock 1501, if it is determined that the last slots in both
input sequences of signal transition representations indicate a
glitch free signal, then the flow proceeds to block 1503.

Atblock 1503, the glitch free range variable is set to a value
designated MATCH, which indicates that first sequence of
signal transition representations and the second sequence of
signal transition representations both indicate a glitch free
signal in corresponding slots. The flow proceeds to block
1507.

Block 1507 is control block that begins a loop of operations
that iterates through each slot of the first and the second
sequences of signal transition representations.

At block 1509, it is determined whether the waveforms
represented by signal transition representations of the current
slot of the first input sequence are a subset of the waveforms
represented by signal transition representations of the current
slot of a second input sequence. If the result of the foregoing
is false, then the flow proceeds to block 1513 at which a value
of false is returned. Conversely, if block 1509 evaluates to
true, then the flow proceeds to block 1515.

At block 1515, it is determined whether the glitch free
range variable is set to a value of OUT. If the forgoing is true,
then the flow proceeds to block 1517. Otherwise, the flow
proceeds to block 1536.

At block 1517, it is determined whether the current slot in
both input sequences indicates a glitch free signal. If the
foregoing is true, then the flow proceeds to block 1519 at
which the glitch free range variable is set to a value of
MATCH, and the flow proceeds to block 1521, where it is
determined whether additional slots remain to be processed.
Otherwise, the flow proceeds to block 1521.

At block 1536, it is determined whether the current slot in
the second input sequence does not indicate a glitch free
signal. If the foregoing is true, then the flow proceeds to block
1538. Otherwise, the flow proceeds to block 1540.

Atblock 1538, the glitch free range variable is set to a value
of OUT, and the flow proceeds to block 1521. At block 1521,
it is determined whether additional slots remain. If there are
additional slots, then the process returns to block 1507. Oth-
erwise, the flow proceeds to block 1523, at which a value of
true is returned.

At block 1540, it is determined whether the current slot in
the first input sequence does not indicate a glitch free signal.
Ifthe foregoing is true, then the flow proceeds to block 1544.
Otherwise, the flow proceeds to block 1542. At block 1544,
the glitch free range variable is set to a value of SUB. The
value SUB designates that, within a range of slots in which the
first input sequence of signal transition representations and

10

15

20

25

30

35

40

45

50

55

60

65

46

the second input sequence of signal transition representations
both initially contained a glitch free signal, there exists a
subrange in which only the second input sequence of signal
transition representations contains a glitch free signal. If the
statement at block 1540 evaluates to false, then the flow
proceeds to block 1542.

At block 1542, it is determined whether the glitch free
range variable indicates a value of SUB. If the foregoing is
true, then a value of false is returned at block 1546. Other-
wise, the flow proceeds to block 1521.

The pseudocode referred to as cwss_is_subset implements
the CWSS operator cwss_is_subset, the operator determining
whether a first CWSS is a subset of a second CWSS. The
pseudocode introduces the variable fg_range state, which
can assume one of three values, denoted MATCH, OUT, or
SUB. The value MATCH indicates that the first CWSS and
second CWSS both contain FG in corresponding slots. The
value OUT indicates that the iterator is outside a range of slots
in which the first CWSS and second CWSS both contain FG
in corresponding slots. The value SUB indicates that, within
a range of slots which started with the first CWSS and second
CWSS both containing FG, there is a subrange in which only
the second CWSS contains FG. A range of slots containing
FG is used to specify sets of waveforms which contain no
glitches during the range of times associated with the slots
associated with the CWSS. For a first CWSS to be a subset of
a second CWSS, the first CWSS must not contain multiple
disjoint ranges of FG in slots for which the second CWSS
contains a single range of FG, because this would allow
waveforms represented by the first CWSS to have multiple
transitions during the corresponding time range, such wave-
forms being excluded from the set of waveforms represented
by the second CWSS which allows at most one transition
during the corresponding time range. The pseudocode deter-
mines whether the last slot in a first CWSS and a second
CWSS equals the NTF FG. If the foregoing condition is met,
then the pseudocode stores the value MATCH in the variable
fg_range_state. Otherwise, the pseudocode stores the value
OUT in the variable fg_range_state The pseudocode iterates
through each slot in each CWSS, determining whether each
NTF of the first CWSS is a subset of the corresponding NTF
of'the second CWSS, by applying the ntf_is_subset operator.
If any NTF in the first CWSS is not a subset of the corre-
sponding NTF of the second CWSS, then the pseudocode
returns false. Otherwise, the pseudocode determines whether
the variable fg_range_state equals the value OUT. If the vari-
able fg range_state equals the value OUT, then the
pseudocode checks whether each NTF of the first CWSS and
the second CWSS equal the NTF FG. If the foregoing is true,
then the value of fg_range_state is set equal to MATCH. Ifthe
variable fg_range_state is not equal to OUT, the pseudocode
checks if the value of any NTF in the second CWSS does not
equal FG, in which case fg_range_state is set equal to OUT.
Otherwise, the pseudocode determines whether the NTF in
the first CWSS does not equal FG. If the foregoing is true,
then fg range_state is set equal to SUB. Otherwise, if the
variable fg_range state equals SUB, then the pseudocode
returns false.

Algorithm for ewss__is__subset. The variable
fg range state has a value of MATCH, OUT, or SUB.
This is used to detect multiple FG ranges in cwss_a
overlapping one FG range in cwss__b.

1 if (cwss_a[7] == cwss_b[7] == FG ) {
2 Set fgrange state = MATCH.



US 9,251,304 B2

47

-continued

Algorithm for ewss__is__subset. The variable
fg range state has a value of MATCH, OUT, or SUB.
This is used to detect multiple FG ranges in cwss__a
overlapping one FG range in cwss__b.

3
4 else {
5 Set fg range state = OUT.
6
7 fori=0to7{
8 if (ntf_is subset (cwss_a[i], cwss_b[i]) returns false ) {
9 Return false.
10
11 else if (fg_range_state == OUT ) {
12 if ( cwss_a[i] == cwss_b[i] == FG ) {
13 Set fg_ range  state = MATCH.
14 1
15 1
16 else if (cwss_b[i] 1=FG ) {
17 Set fg_ range_ state = OUT.
18
19 else if (ewss_a[i] 1=FG ) {
20 Set fg_ range state = SUB.
21
22 else if (fg_range_state == SUB ) {
23 Return false. (We detected multiple FG ranges in
cwss__a during one FG range in cwss__b.)
24 1
25

26 Return true

FIGS. 16-24 are conceptual depiction of circuit design
evaluation with example phase tags. FIG. 16 shows the topol-
ogy of an example design. The design includes two clock
signals 1602, 1606, which are primary inputs to the design.
The clock signals 1602, 1606 can be generated by external
clocks referred to as CLKA and CLKB, respectively. The
design includes three flip-flops 1622, 1626, and 1642. Each
flip-flop 1622, 1626, and 1642 is comprised of two transpar-
ent latches and an inverter 1646 as depicted in the inset. The
design includes two path delay blocks 1630, 1634 to model
signal propagation delays. The design also includes an AND
gate 1638. The design can be provided to a general purpose
computer as an input. For example, in one embodiment, a
schematic like the one shown in FIG. 16 can be provided as an
input to a graphical user interface of a computer program that
embodies the disclosure. The general purpose computer can
be configured to convert the schematic into a netlist. The
nodes of the netlist correspond to the circuit components
1602-1642. The nets of the netlist correspond to the signals
1610-1666. In one embodiment, a user can provide the phase
tags at 1610, 1618, and 1674 as primary inputs to a general
purpose computer executing a software embodiment of the
disclosure.

FIG. 17 depicts the design after application of the initial-
ization algorithm. A computer program implementing the
initialization algorithm can assign the phase tag “-” to nets
1704, 1708, 1712, 1716, 1720, 1724. A computer program
implementing the initialization algorithm can also instantiate
the source set 1728 and the update set 1732. The computer
program can populate the source set with the boxes 1736,
1740, and 1744, corresponding to flip-flops 1736, 1740,
1744. The boxes in the source set are the sink boxes of nets for
which phase tags were provided, in accordance with the ini-
tialization algorithm. The computer program can populate the
update set 1732 with the null set.

FIG. 18 depicts the design after executing one iteration of
the propagation algorithm. In FIG. 16, phase tags were fur-
nished for the primary inputs of a circuit design to a general
purpose computer. Phase tags are a subset of phase expres-

10

15

20

25

30

35

40

45

50

55

60

65

48

sions. Thus, the propagation process begins application of
phase tag operators. Since the circuit component associated
with box 1836 is a flip-flop, in one embodiment, the flip-flop
phasetag operator is invoked. The flip-flop phase tag operator
takes two phase tag inputs, “A@L” and “A.”” The phase tag
operator associated with a flip-flop invokes the phase type
operator associated with a flip-flop. The phase type operator
associated with a flip-flop, pt_{flipflop, invokes the phase type
operator associated with a latch, pt_latch. The phase type
operator associated with a latch invokes the phase type group
operator and the CWSS operator, each associated with a latch.
The phase type operator invokes the first matching phase type
algorithm, passing the first matching phase type algorithm the
results of the phase type group operator and the CWSS opera-
tor. The CWSS operator associated with a latch invokes the
NTF operators associated with the CWSS. The result of the
foregoing operations is a phase tag “A@LPGF” at the output
net 1804 associated with the flip-flop. The propagation algo-
rithm then puts the sink box of the output net, PDBI, in the
update set, removing flip-flop 1836 from the source set 1828.

FIG. 19 illustrates the second iteration of the propagation
algorithm. As shown in FIG. 19 and in one implementation, a
general purpose computer implementing the propagation
algorithm applies the propagation algorithm to flip-flip 1940.
Thus, the same operations are executed as described in FIG.
18. The computer program implementing the algorithms
described in the disclosure causes the general purpose com-
puter to remove flip-flop 1940 from the source set and to place
PDB2 1948 in the update set 1932, since PDB2 1948 is the
sink box associated with the output net 1908. Accordingly,
the source set 1928 includes one element, flip-flop 1944, as
shown in FIG. 19.

FIG. 20 illustrates the third iteration of the propagation
algorithm. The propagation algorithm updates the value at the
output net of flip-flop 2044, the last item in the source set. The
result of the foregoing is the phase type shown at the output
net 2024. As shown at 2060, flip-flop 2044 is removed from
the source set, since an output phase type as shown at output
net 2024 has been calculated for the output net 2024 associ-
ated with flip-flop 2044. The source set 2028 is checked to
determine whether the source set 2028 is empty. Since the
source set 2028 is empty, the update set 2032 is moved to the
source set as shown at 2064, and the update set 2056 is
cleared. It is determined whether the source set is now empty.

FIG. 21 illustrates the fourth iteration of the propagation
algorithm. The propagation algorithm updates the value at the
PDBI1 2104 output net 2108. As described above in previous
figures, the propagation algorithm generates the value at the
output net 2108 with the operators associated with the PDB
circuit component. Initially, the source set 2120 and update
set 2124 are as depicted at 2116. However, after generating
the output phase type, the propagation algorithm removes
PDB1 2104 from the source set 2132 and includes the AND
gate 2112 in the update set 2136, since the AND gate 2112 is
the sink box of the output net 2108. Since the source set is not
empty, the propagation algorithm continues to a fifth itera-
tion.

FIG. 22 illustrates the fifth iteration of the propagation
algorithm. The propagation algorithm follows similar opera-
tions as those described in FIG. 21, generating an output
phase tag at the output net 2208 of PDB2 2204. Prior to the
fifth iteration, the source set 2216 and update set 2220
included the contents depicted at 2212. After completion of
the fifth iteration, PDB2 is removed from the source set 2216
as indicated at 2224. At block 2228, the source set is empty.
Accordingly, the update set is moved to the source set, result-



US 9,251,304 B2

49

ing in the contents depicted at 2236, the source set 2240
containing the AND gate 2248, and the update set 2244 con-
taining the null set.

FIG. 23 illustrates the sixth iteration of the propagation
algorithm. The propagation algorithm is applied to the AND
gate circuit component 2304. Hence, the operators that are
invoked are associated with the AND gate circuit component
2304. Through application of the propagation algorithm, an
output phase tag is determined at the output net 2306 of the
AND gate 2304. Prior to commencing the sixth iteration, the
source set 2312 and update set 2316 are as shown at 2308.
After conclusion of the sixth iteration, the source set 2324 and
update set 2328 are as shown at 2320. The update set is then
overwritten to the source set and depicted at 2332.

FIG. 24 illustrates the seventh iteration of the propagation
algorithm. The propagation algorithm is applied to the flip-
flop 2408, and flip-flop 2408 is removed from the source set.
The phase expression resulting is identical to the phase
expression currently assigned to the output net 2410 of flip-
flop 2408. There is no change to the update set relative to the
previous iteration; therefore, the update set remains empty.
The update set is moved to the source set, as depicted at 2424.
Since the source set is empty, the propagation algorithm has
completed its tasks, and the flow proceeds to checking algo-
rithms.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present inventive subject matter may take the form of an
entirely hardware embodiment, a software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tive subject matter may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other

10

15

20

25

30

35

40

45

50

55

60

65

50

transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider). In some embodiments, electronic circuitry including,
for example, programmable logic circuitry, field-program-
mable gate arrays (FPGA), or programmable logic arrays
(PLA) may execute the computer readable program instruc-
tions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in
order to perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.



US 9,251,304 B2

51

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operations to be
performed on the computer, other programmable apparatus or
other device to produce a computer implemented process,
such that the instructions which execute on the computer,
other programmable apparatus, or other device implement the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

FIG. 25 depicts an example computer system compact
multi-wave based circuit design evaluator. A computer sys-
tem includes a processor unit 2504 (possibly including mul-
tiple processors, multiple cores, multiple nodes, and/or
implementing multi-threading, etc.). The computer system
includes a memory unit 2508. The memory unit 2508 may be
system memory (e.g., one or more of cache, SRAM, DRAM,
zero capacitor RAM, Twin Transistor RAM, eDRAM, EDO
RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS,
PRAM, etc.) or any one or more of the above already
described possible realizations of machine-readable media.
The computer system also includes a bus 2512 (e.g., PCI bus,
ISA bus, PCI-Express bus, HyperTransport® bus, Infini-
Band® bus, NuBus, etc.). The computer system also includes
a compact multi-wave based circuit design evaluator (“evalu-
ator”) 2521. The evaluator propagates compact representa-
tions of multiple waveforms throughout nets of a register
level circuit design representation as previously described.
The memory unit 2508 may include one or more functional-
ities that facilitate storing the look-up tables or other data
structures for evaluating a circuit design representation based
on representations of multiple waveforms and decomposition
of compact multi-waveform representations into sequence of
non-deterministic signal transition representations. Any one
of these functionalities may be partially (or entirely) imple-
mented in hardware and/or on the processor unit 2504. For
example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processor unit 2504, in a co-processor on a peripheral
device or card, etc. The processor unit 2504 and the memory
unit 2508 are coupled to the bus 2512. Although illustrated as
being coupled to the bus 2512, the memory unit 2508 may be
coupled to the processor unit 2504.

While the embodiments are described with reference to
various implementations and exploitations, it will be under-
stood that these embodiments are illustrative and that the
scope of the inventive subject matter is not limited to them. In
general, techniques for evaluating a register level circuit

10

15

20

25

30

35

40

45

50

55

60

65

52

design representation with compact multi-waveform repre-
sentations as described herein may be implemented with
facilities consistent with any hardware system or hardware
systems. Many variations, modifications, additions, and
improvements are possible.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the example configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.

What is claimed is:

1. A method comprising:

determining a sequence of signal transition representations

associated with an input net of an indicated component
in a register transfer level circuit design, wherein each
signal transition representation of the sequence of signal
transition representations represents a non-deterministic
transition from a previous signal state to a set of one or
more possible signal states;

determining, based on the indicated component, an output

sequence of signal transition representations derived
from the sequence of signal transition representations
associated with the input net;

determining whether the output sequence of signal transi-

tion representations conforms to restrictions that restrict
which signal transition representations can be adjacent
to other signal transition representations;

associating the output sequence of signal transition repre-

sentations with an output net of the indicated component
if the output sequence of signal transition representa-
tions conforms to the restrictions; and

modifying the output sequence of signal transition repre-

sentations to conform to the restrictions if the output
sequence of signal transition representations does not
conform to the restrictions and associating the modified
output sequence of signal transition representations with
the output net.

2. The method of claim 1, wherein said determining the
sequence of signal transition representations associated with
the input net of the indicated component comprises determin-
ing that the sequence of signal transition representations is
specified for a representation of any number of waveforms
that is assigned to the input net.

3. The method of claim 2 further comprising determining a
group identifier specified for the representation of any num-
ber of waveforms, wherein the group identifier disambiguates
the sequence of signal transition representations that is speci-
fied for more than one representation of any number of wave-
forms.

4. The method of claim 3 further comprising:

if the indicated component has a single input net that is the

input net,

determining, based on the indicated component, a first
output group identifier derived from the group iden-
tifier specified for the representation of any number of
waveforms associated with the input net;



US 9,251,304 B2

53

if the indicated component has a plurality of input nets,

determining, based on the indicated component, the first
output group identifier derived from group identifiers
specified for the representations of any numbers of
waveforms associated with the plurality of input nets,
wherein the plurality of input nets includes the input
net.

5. The method of claim 4 further comprising traversing an
ordered structure of representations of any numbers of wave-
forms until an entry is found that indicates a sequence of
signal transition representations that represents a superset of
waveforms relative to a set of waveforms represented by the
output sequence of signal transition representations or the
modified sequence of signal transition representations and
that indicates a group identifier that matches the first output
group identifier.

6. The method of claim 1, wherein said determining, based
on the indicated component, the output sequence of signal
transition representations derived from the sequence of signal
transition representations associated with the input net com-
prises applying an operation that represents behavior of the
indicated component.

7. The method of claim 1 further comprising initializing
nets of the register transfer level circuit design representation
to identify those of the nets associated with either a primary
inputor a clock signal generator and to identify those nets that
are not associated with a representation of any number of
waveforms.

8. The method of claim 1 wherein said determining the
output sequence of signal transition representations derived
from the sequence of signal transition representations asso-
ciated with the input net comprises determining the output
sequence of signal transition representations derived from the
sequence of signal transition representations associated with
the input net and from another sequence of signal transition
representations associated with a second input net.

9. A computer program product for evaluating a circuit
design, the computer program product comprising:

a computer readable storage medium having program
instructions stored thereon, the program instructions
comprising program instructions to,

determine a sequence of signal transition representations
associated with an input net of an indicated component
in a register transfer level circuit design, wherein each
signal transition representation of the sequence of signal
transition representations represents a non-deterministic
transition from a previous signal state to a set of one or
more possible signal states;

determine, based on the indicated component, an output
sequence of signal transition representations derived
from the sequence of signal transition representations
associated with the input net;

determine whether the output sequence of signal transition
representations conforms to restrictions that restrict
which signal transition representations can be adjacent
to other signal transition representations;

associate the output sequence of signal transition represen-
tations with an output net of the indicated component if
the output sequence of signal transition representations
conforms to the restrictions; and

modify the output sequence of signal transition represen-
tations to conform to the restrictions if the output
sequence of signal transition representations does not
conform to the restrictions and associate the modified
output sequence of signal transition representations with
the output net.

10

15

20

25

30

35

40

45

50

55

60

65

54

10. The computer program product of claim 9, wherein the
program instructions to determine the sequence of signal
transition representations associated with the input net of the
indicated component comprises program instructions to
determine that the sequence of signal transition representa-
tions is specified for a representation of any number of wave-
forms that is assigned to the input net.

11. The computer program product of claim 10 further
comprising program instructions to determine a group iden-
tifier specified for the representation of any number of wave-
forms, wherein the group identifier disambiguates the
sequence of signal transition representations that is specified
for more than one representation of any number of wave-
forms.

12. The computer program product of claim 11 further
comprising program instructions to:

if the indicated component has a single input net that is the

input net,

determine, based on the indicated component, a first
output group identifier derived from the group iden-
tifier specified for the representation of any number of
waveforms associated with the input net;

if the indicated component has a plurality of input nets,

determine, based on the indicated component, the first
output group identifier derived from group identifiers
specified for the representations of any numbers of
waveforms associated with the plurality of input nets,
wherein the plurality of input nets includes the input
net.

13. The computer program product of claim 12 further
comprising program instructions to traverse an ordered struc-
ture of representations of any numbers of waveforms until an
entry is found that indicates a sequence of signal transition
representations that represents a superset of waveforms rela-
tive to a set of waveforms represented by the output sequence
of signal transition representations or the modified sequence
of'signal transition representations and that indicates a group
identifier that matches the first output group identifier.

14. The computer program product of claim 9, wherein the
program instructions to determine, based on the indicated
component, the output sequence of signal transition represen-
tations derived from the sequence of signal transition repre-
sentations associated with the input net comprises program
instructions to apply an operation that represents behavior of
the indicated component.

15. The computer program product of claim 9 further com-
prising program instructions to initialize nets of the register
transfer level circuit design representation to identify those of
the nets associated with either a primary input or a clock
signal generator and to identify those nets that are not asso-
ciated with a representation of any number of waveforms.

16. The computer program product of claim 9 wherein the
program instructions to determine the output sequence of
signal transition representations derived from the sequence of
signal transition representations associated with the input net
comprises program instructions to determine the output
sequence of signal transition representations derived from the
sequence of signal transition representations associated with
the input net and from another sequence of signal transition
representations associated with a second input net.

17. An apparatus comprising:

a processor; and

a computer readable storage medium having stored thereon

program instructions executable by the processor to
cause the apparatus to,

determine a sequence of signal transition representations

associated with an input net of an indicated component



US 9,251,304 B2

55

in a register transfer level circuit design, wherein each
signal transition representation of the sequence of signal
transition representations represents a non-deterministic
transition from a previous signal state to a set of one or

more possible signal states; 5

determine, based on the indicated component, an output
sequence of signal transition representations derived
from the sequence of signal transition representations
associated with the input net;

determine whether the output sequence of signal transition 10

representations conforms to restrictions that restrict
which signal transition representations can be adjacent
to other signal transition representations;

associate the output sequence of signal transition represen-

tations with an output net of the indicated component if 15

the output sequence of signal transition representations
conforms to the restrictions; and

modify the output sequence of signal transition represen-
tations to conform to the restrictions if the output

sequence of signal transition representations does not 20

conform to the restrictions and associate the modified
output sequence of signal transition representations with
the output net.

18. The apparatus of claim 17, wherein the program

instructions executable by the processor to cause the appara- 25

tus to determine the sequence of signal transition representa-
tions associated with the input net of the indicated component
comprises program instructions program instructions execut-

56

able by the processor to cause the apparatus to determine that
the sequence of signal transition representations is specified
for a representation of any number of waveforms that is
assigned to the input net.

19. The apparatus of claim 18 further comprising program
instructions executable by the processor to cause the appara-
tus to determine a group identifier specified for the represen-
tation of any number of waveforms, wherein the group iden-
tifier disambiguates the sequence of signal transition
representations that is specified for more than one represen-
tation of any number of waveforms.

20. The apparatus of claim 19 further comprising program
instructions executable by the processor to:

if the indicated component has a single input net that is the

input net,

determine, based on the indicated component, a first
output group identifier derived from the group iden-
tifier specified for the representation of any number of
waveforms associated with the input net;

if the indicated component has a plurality of input nets,

determine, based on the indicated component, a first
output group identifier derived from group identifiers
specified for the representations of any numbers of
waveforms associated with the plurality of input nets,
wherein the plurality of input nets includes the input
net.



